Proceedings of the Twenty-Fifth Innovative Applications of Artificial Intelligence Conference

An Antimicrobial Prescription Surveillance
System that Learns from Experience

Mathieu Beaudoin and Froduald Kabanza

Department of Computer Science
Université de Sherbrooke, Canada

Vincent Nault and Louis Valiquette
Department of Microbiology and Infectiology
Université de Sherbrooke, Canada

{mathieu.beaudoin, froduald.kabanza} @usherbrooke.ca {vincent.nault, louis.valiquette} @usherbrooke.ca

Abstract

alerts] The supervised learning algorithm combines instance-
based learning and rule induction techniques. It exploits tem-
poral abstraction to extract a meaningful time interval repre-
sentation from raw clinical data, and applies nearest neighbor
classification with a distance function on both temporal and
non-temporal parameters. The learning capability is valuable
both in configuring the system for initial deployment and im-
proving its long term use. We give an overview of the appli-
cation, point to lessons learned so far and provide insight into
the machine learning capability.

Introduction

Inappropriate prescribing of antimicrobials (ATM) is a ma-
jor clinical problem and health concern, as well as a financial
burden, in hospitals worldwide. It has been reported that as
many as

(Dellit et al. 2007). ATM stewardship programs
have been shown to reduce avoidable adverse effects (toxi-
city, ATM resistance, Clostridium difficile, etc. (Dellit et al.
2007; Valiquette et al. 2007)), improve patient health and
reduce unnecessary costs.

For the most part, prescription monitoring systems use
a knowledge base (KB) of rules acquired from experts to
detect inappropriate prescriptions and prevent potential ad-

verse events. Local and commercial solutions (e.g., Pre-
mier Inc.; Pharmacy OneSource) are generally characterized
by highly sensitive rules with poor precision that trigger a
high rate of clinically unhelpful alerts (Hsieh et al. 2004;
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Reichley et al. 2005). This high rate of false alerts impedes
their use. The problem comes from the inability to create
a complete and precise KB and the tendency to otherwise
use a “totally inclusive” KB. It is difficult to model all vari-
ables that a prescribing physician will take into account, let
alone model the decision-making process. ATM prescribing
is a subjective process where physicians continually rely on
their experience to select an effective treatment and prevent
adverse events. In addition to published guidelines, hospi-
tals have their own local practices (Reichley et al. 2005) that
must be covered by these rules.

long'term supervised by userfeedbackiiAlthough the appli-

cation of machine learning to clinical temporal data is not
new, to the best of our knowledge, this is its first application
to the monitoring of drug prescriptions.

Prescriptions are temporal data by nature. ATM prescrip-
tions are valid over periods of time; after selecting an ini-
tial treatment, a physician must review his earlier prescrip-
tion to account for newly available information. Monitoring
laboratory test results and variations in the patient’s health
condition is critical since it can render an initially appro-
priate treatment inappropriate. Taking this temporal nature
into account, APSS uses a supervised learning algorithm for
discovering rules that classify temporal data. We approach
the problem as a binary classification task into good and bad
temporal sequences (i.e., prescriptions). The algorithm we
use is a combination of rule induction and instance-based
learning methods.

In the next section, we give an overview of APSS and dis-
cuss its development, deployment, and evaluation thus far.
We then discuss the ongoing development of the machine
learning extension. We follow with a presentation of prelim-
inary results for this learning capability and conclude with
future work.
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APSS is currently deployed at the Centre Hospitalier Uni-
versztazre de Sherbrooke CHUS), a 713-bed Canadian med-

APSS a551sts in the post-prescription revision process, as

The project began in 2005 with the objective of find-
ing a solution to facilitate manual ATM optimization. In-
tensive manual ATM optimization was required in 2005 to
control province-wide outbreaks of C. difficile infections by
decreasing the use of high-risk antibiotics associated with
C. difficile. ATM optimization decreased overall use of ATM
during this period (Valiquette et al. 2007) and the outbreak
subsided. However, these measures required important re-
sources that could not be sustained subsequently. After man-
ual surveillance ended, overall ATM consumption eventu-
ally returned and surpassed pre-outbreak levels.
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The solution put forward was to use an automated pre-
scription monitoring system to facilitate and enhance our
ATM stewardship activities. We selected an asynchronous
revision process because it dovetails nicely with the “pen
and paper” prescribing practices that are still the norm at
our centre. Synchronous validation at the time of comput-
erized order entry was ruled out because it was perceived
to hinder the prescribing physicians’ workflow. Introducing
APSS to our centre’s ATM stewardship program was sim-
ple; we provided a tool that assists the clinical pharmacists
already assigned to ATM revision, resulting in a transparent
integration to the existing prescription practice.

We set about to develop APSS in 2007 and began with the
complex task of developing its KB. Our multidisciplinary
team consisted of one professor/researcher assisted by a
doctoral candidate in computer science and a programmer-
analyst, one infectious diseases physician/researcher as-
sisted by a doctoral candidate in clinical science, and one
hospital pharmacist. We extracted rules from published and
local guidelines and tested them retrospectively to validate
the potential for prospective interventions.

The approach used by APSS to revise ATM prescriptions
is inspired from a standardized model for evaluating antibi-
otic prescriptions published by Gyssens et al. (Gyssens et
al. 1992) and depicted in Figure 2. Following this model,

To illustrate, the physician may diag-
nose a bacterial infection after an initial clinical evaluation
of the patient, prescribe a particular ATM therapy and, in the
meantime, order a microbiology test. Three days later, the
microbiology test might reveal the bacteria’s susceptibility
profile. Assuming the profile indicates that the bacteria is
resistant to the previously prescribed ATM therapy, that is,
the previously prescribed ATM therapy is ineffective against
this particular bacteria, then the prescription should be re-
vised for a more effective alternative.

As illustrated in Figure 2,
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Figure 2: Standardized model to evaluate antibiotic prescrip-
tions published by (Gyssens et al. 1992)

The design of the KB for APSS follows the above
Gyssens model. Each step in this process corresponds to
a set of contraindication rules to be checked.

The KB can be visualized and edited by using the Knowl-

One instance occurred during a re-
cent minor outbreak of C. difficile infections. The committee
on health care-associated infections requested the addition

1453

— 1,754 clinically irrelevant

6,673 not

! — 1,066 insufficient clinical impact
reviewed

—> 122 rejected by physician
—> 1,222 accepted interventions

Figure 3: Alerts were triggered for 10,837 prescriptions dur-
ing the first 53-week period

of temporary rules to monitor every high-risk ATM.

APSS can communicate with the CHUS’ EHR through a
data communication interface that we have developed. In
collaboration with the Information Technology (IT) Depart-
ment, we identified the required variables and normalized
their values. We developed the exportation and importa-
tion interfaces using Health Level Seven (HL7) standards.
We deployed APSS’ databases and Knowledge Management
Module. Support from the CHUS’ decision makers and IT
Department management was required to ensure advance-
ment of these steps.

i

making it the first ATM prescription monitoring system in

Canada. , a clinical pharmacist
e S an average of 15 hours per week. _

As summarized on Fig-

However, alerts for

APSS was met by prescribers and decision makers with
universal appreciation and recognition.

APSS also enabled us to extend our surveillance from high-
risk wards (e.g., intensive care) to every bed of the CHUS’
two physical sites. We are currently evaluating the impacts
of APSS on patient health.

APSS Learning Capability

From the beginning of the project we started investigating
a mechanism to improve APSS’ KB from experience. The
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Figure 4: Overview of APSS’ Learning Module

with feedback from phar-

see Figure 4).

This learning capability is expected to help configure
APSS whenever it is deployed at a new hospital that has pre-
scription practices differing from the CHUS’ where APSS is
currently deployed. More importantly, this capability will be
expected to improve APSS in the long run in every hospital
where it is deployed. Another expected use of this module
is data mining to discover unforeseen yet clinically relevant
patterns of inappropriate prescribing that may be addressed
by our stewardship program with targeted in-service train-
ing. One such pattern was discovered during our experimen-
tation and is discussed in the Preliminary Results section.

Cohort Selection and Data Preprocessing

For the experiments discussed later aper, we con-

in this
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Figure 5: Example of state abstraction for the temp attribute

We used temporal abstraction (Shahar 1997) to extract a
uniform and meaningful data representation from the raw
clinical data of APSS. This data contains qualitative and
quantitative attributes sampled with both time points (e.g.,
temp) and time intervals (e.g., drug order). Figure 5 illus-
trates the process of state abstractions for the raw femp time

Selecting the Learning Algorithm

There are various applications of data mining and machine
learning algorithms to clinical temporal data.

Bellazzi et al. 2005;

It uses an Apriori-
like strategy (Agrawal and Srikant 1994) with breadth-first
search and candidate pruning based on support and confi-
dence. The problem when looking for infrequent patterns
is the necessity to lower support thresholds.

Another method that was used to identify clinical events



























identify potential adverse drug events (Hartge, Wetter, and
Haefeh 2006) and hemodlalysm treatment failures (Montani,

Formulating the Learning Problem

Let us consider the attribute space A as the finite set of at-
tributes for our domain and the feature space F' as the finite

set of qualitative values observed for these attributes. An
episode e is defined as < a, f,ts,te >, where (a = f) de-
scribes a symbolic state with @ € A and f € F holding
over the time interval [ts, te[. We refer to the attribute, fea-
ture, start, and end times of an episode as e.a, e.f, e.ts, and
e.te, respectively. An example of episode from Figure 5 is
< temp,normal, tpin, t3 >.

A sequence sis defined by {e1,...,e,|Vi=1,...,n—1:
e;.ts < e;y1.ts}, where n = |s| represents the size of the se-
quence. We refer to the subsequence of s for the 7th attribute
a; € Aasatt;(s) defined by {eq, ..., en|Ve € att;(s) 1 e €
s;e.a =a;;Vj =1,...,m—1:ejte < eji.ts}, where
m = |att;(s)|. A hospitalization is described as a labeled
sequence ls defined as {id, s,}, where id is a unique iden-
tifier, s is a sequence, and [ is a class label that belongs to
the finite set of class labels L. We focus on a binary-class
problem where L = {appropriate,inappropriate}. We
used APSS’ revised alerts to label every sequence, where
inappropriate indicates a true positive (alert that has been
validated by a user) and appropriate indicates a negative
(no alert) or false positive (alert that was rejected by a user).

We can now formally state the supervised machine learn-
ing problem that concerns us. Given a finite training set of
labeled sequences 1S, discover a rule set R for inappropri-
ate sequences. We only have two classes (appropriate and
inappropriate). Learned classification rules identify inap-
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propriate instances. The antecedent of a learned rule is a
conjunction of propositions over time intervals whose satis-
faction implies membership to the inappropriate class as the
consequent.

Temporal Induction of Classification Models

Our supervised learning algorithm, called Temporal Induc-
tion of classification Models (TIM) combines instance-based
learning and rule induction. Its main operations are the fol-
lowing: at first, the rule set R is initialized using inappropri-
ate sequences of the training set as maximally specific rules.
Distances between rules and sequences of the training set are
computed and stored in a multidimensional distance matrix
to reduce computation times. These distances are used for
nearest nelghbor cla551ﬁcat10n Rules are modified in par-

Conditions

The rules are evaluated accordin

Smyth and Goodman 1991), which
We selected the J-measure for

its ability to account for both simplicity and goodness-of-fit,
measuring the probability and cross-entropy of a rule (Smyth

Classification

The distance function measures the similarity between rules
and sequences. Since the rules are intended to classify se-

A non-symmetric distance func-
tion is used where similarity is proportional to the number of

conditions that a seiuence shares with a rule, i.e.,-

Given a rule » € R with N, attributes and a sequence
s € TS, the global distance(r,s) function is defined by
(1). Normalizing distance(r, s) by N, creates a coefficient
between [0, 1] that does not arbitrarily favor shorter rules,
where 0 denotes perfect similarity. To ensure that irrele-
vant sequences are not labeled inappropriate by the nearest
yet dissimilar rule, we enforce a minimal distance threshold

Dill under which a rule is said to cover a seiuence. -

S Dulatt(r).atti(s)
Ny

The D, function measures the distance between the sub-
sequences att;(r) and att;(s) for the ith attribute of r. If
att;(s) = null, D, = 1, otherwise we use (2), which
measures the distance between the conditions ¢; € att;(r)
and episodes e, € att;(s). An indexing mechanism re-
trieves attribute-specific subsequences in O(1). We normal-
ize the distance D, € [0,1] to avoid arbitrarily increasing

distance(r, s) =

















































Conditions ci=Normal Cco=High
< similar > < similar >

Episodes |ej=Normal e,=High | es=Normal |
0 3 s 8 9 13

Figure 6: Example of a rule’s conditions and a sequence’s
episodes

the weight of the ¢th attribute in the overall coefficient.

Da(atti (’I”), atti(s)) =

|att;(r)| — ( l]‘a:t?w St Sp (e, ex) x St(ey, 3k)>
|atti(r)]

@

Feature similarity. Sp measures the similarity between
the symbolic features of c¢; and e using the overlap met-
ric where Sy (c;, e) = 1if (¢;.f = ey.f) and 0 otherwise.

Temporal similarity. St is proportional to the temporal
overlapping of ej, over c¢;, as measured by (3). St returns
a coefficient between [0, 1], where 1 implies [c;.ts, ¢;.te[ C
[ek.ts, ex.tel.

[c;.ts, cj.te[ N [ek.ts, ek te]

3

Sr(eser) = [cj.ts, cj.te

Consider the attribute-specific subsequences of Figure 6.
A rule’s antecedent att;(r) with conditions ¢; and ¢y over-
laps a sequence’s att;(s) with episodes ej, es and e3. The
distance between these subsequences is 0.2, which is com-
puted as follows:

D, (att;(r), att;(s))
2- <E?:1 Y a1 (Se(cjsex) X ST(%%)))

2
(1x0.6)+(0x0.4)+(1x0)+
2_( (0><0)—|—(1><1)+(0><0))

2

Refinement of the Rule Set

The intuition behind this rule refinement process is that

Rules are modified by
removing the temporal overlapping between a similar con-
dition ¢ and episode e, resulting in a modified condition ¢’
being either entirely removed or subsumed by c.

For example, modifying the conditions of Figure 6 ac-
cording to episodes e1, ey and e3 reduces the time interval
of ¢; from [0, 5[ to [3, 5[ and completely removes co. Conse-
quently, the distance between these subsequences increases
from from 0.2 to 1.
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Dataset Episode Seq. Inappr. Attr.
Training 9,176 132 12
METRO  “'rost~ 19182 278 46 1206
Training 37,428 485 190
TAZO "o 68188 947 413 81

Table 1: Description of two datasets used in our experiments

Preliminary Results for the Learning Capability

For a preliminary evaluation of the learning capability, we
tested APSS with learning rules that identify an ‘h

_’. Early switch therapy is a key intervention
in ATM prescribing where an*
ﬁ providing a less costly alternative and al-

lowing the patient to be discharged earlier.

The rules for recognizing patients who were eligible for an
early switch involve non trivial temporal constraints, mak-
ing them a good test case for the learning algorithm.

We created two datasets of different sizes and ratios of

inappropriate sequences. The first was created with pa-
tients who received piperacillin-tazobactam (TAZO), our
centre’s most prescribed intravenous ATM. We created a
smaller dataset with patients who received metronidazole
(METRO), an ATM predominantly prescribed orally. They
were partitioned into fraining and fest datasets. Table 1 de-
scribes their number of episodes, sequences, inappropriate
sequences, and attributes. APSS preprocessed these datasets
in 121.9 seconds and 6.9 seconds, respectively.

While precision was lower, it remained above APSS without
TIM. Rules were presented to an infectious diseases special-
ist who evaluated their clinical relevance using a five-point
Likert scale ranging from 1-no relevance to 5-excellent rele-
vance. Excellent relevance required the presence of all three
indications for early switch therapy. Figure 7 presents the
scores; 63% of the rules were found to be clinically relevant
(score > 3). Interestingly, rules with high relevance scores
also had the highest information content (J-measure). On
the other hand, rules with a relevance score of 1 were very
specific and covered less than 1% of the test set. Removal
of these rules from the rule set leads to little loss in alert
coverage and accuracy.

Our expert used clinical information not associated to the
three previous indications to identify patient profiles asso-
ciated with early switch therapy. Consider the conditions
of the rule in Figure 8 with a relevance score of 5. Not-
ing C' the conjunction of these conditions, we have the rule
C — inappropriate. Direct indications for early switch
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Figure 7: Relevance score of 35 extracted rules
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Figure 8: Conditions of a rule with relevance score of 5

therapy are respected with prolonged intravenous (IV) treat-
ment, normal levels of white cell count (WCC), and con-
current oral treatment. Moreover, prolonged stay at the
emergency room (E R), old age, salbutamol, and additional
ATM coverage with cipro floxacin may indicate suspicion
of pneumonia caused by resistant pathogens. Ten rules
targeted patients under post-operative ATM prophylaxis, a
practice not supported by medical evidence that will be ad-
dressed by our stewardship program. Another finding was
that eight rules targeted patients with BAM 1 > 40. It could
suggest that extended intravenous treatments are prescribed
for very severely obese patients to ensure targeted concen-
trations are achieved. These patient profiles provide insight
into our centre’s prescribing practices and are of high inter-
est for further investigation, as they identify subgroups of
patients that could require closer monitoring or wards that
could benefit from targeted in-service training.

We also compared TIM to three well-known learning
methods for this type of problem. Table 2 reports their re-
spective number of rules, computation time, precision, re-
call, and accuracy. The first method used retrieval-only
instance-based learning (IBL) where every known inappro-
priate sequence is used as a rule. The second method (CRL)
used CN2’s (Clark and Niblett 1989) general-to-specific
search where individual rules are created by iteratively se-
lecting the “best” condition. Conditions are added until they
no longer improve the rule’s J-measure or until every in-
appropriate instance is covered. The third method used an
association rule mining (ARM) approach based on Apri-
ori (Agrawal and Srikant 1994). Various strategies were
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Algo. #rules Time(s) Prec. Rec. Acc.

o TIM 5 04 538 76.1 85.3
ﬁ IBL 12 0.2 30.1 957 626
iy CRL 1 46.0 565 76.1 863
= ARM 8,074 152 441 326 820
TIM 30 735 625 990 737

8 IBL 190 95 593 993 70.0
ﬁ CRL 6 583.1 714 88.1 794
ARM 614,652 17,8645 660 814 73.6

Table 2: Comparison of four algorithms on two datasets

used in CRL and ARM to focus on highly predictive rules for
the inappropriate class. For example, ARM used candidate
pruning on both support (METRO: supp > 0.015; TAZO:
supp > 0.02) and confidence (conf > 0.75), and elimi-
nated dominated patterns (Zaki, Lesh, and Ogihara 2000).
We restricted ARM to rules of size 4 for the TAZO test.
Overall, TIM achieved relatively similar or better recall
and accuracy than CRL and IBL, except for the recall met-
rics in METRO. IBL succeeded in classifying correctly most
unseen inappropriate sequences in both tests. However, the
wide coverage of its rules also incorrectly classified sev-
eral appropriate sequences, penalizing greatly its precision
and accuracy. In contrast, CRL achieved good precision
and accuracy on both datasets, yet by creating fewer rules
for classifying sequences. However, they identified fewer
inappropriate sequences in both tests. On the other hand,
TIM combines the strengths of both previous methods. Per-
forming a specific-to-general search and modifying every
rule in parallel according to appropriate sequences speeds
up the process, enabling TIM to outperform CRL by up
to two orders of magnitude. TIM in addition better suc-
ceeds in identifying inappropriate sequences with equal or
higher recall, without sacrificing much accuracy. Further-
more, TIM harnesses CRL’s ability to extract fewer rules
than IBL. ARM performed poorly, being 30 to 200 times
slower than TIM and producing much more rules, requiring
heavy post-processing to identify a subset of accurate rules.

Conclusion and Future Work

In this paper, we presented APSS, a clinical decision support
system that evaluates antimicrobial (ATM) prescriptions and
produces alerts for potentially inappropriate ones. Since its
deployment in August 2010, APSS has been met by pre-
scribers and decision makers with universal appreciation and
recognition. We also presented an emerging machine learn-
ing capability for APSS. The learning capability combines
instance-based learning and rule induction to learn prescrip-
tion classification rules from user feedback.

We discussed preliminary results demonstrating the rule-
learning capability for appropriate early switch from intra-
venous to oral ATM therapy. A majority of learned rules
were found to be clinically relevant because they succeeded
in identifying the clinical indications for early switch ther-
apy. From these rules, a clinician identified patient pro-
files associated with early switch recommendations provid-



ing further insight into our centre’s prescribing practices and
a potential for targeted interventions (e.g., unsupported use
of post-operative antimicrobial prophylaxis).

The next step is to pursue the experimentation of the
learning capability before its release in the deployed ver-
sion of APSS. Users will then be able to utilize the learn-
ing module to explore different rule sets and keep the rules
they find clinically relevant and accurate. Learning from im-
balanced data sets, where there are many more instances of
some classes than others, is an important issue in domains
such as ours, where inappropriate prescriptions are more the
exception than the norm. Although the preliminary results of
our algorithm seem encouraging, we have not yet character-
ized the algorithm with respect to the imbalanced data prob-
lem. This is on our agenda for future work. Other methods
of temporal data mining could be integrated to the knowl-
edge management tools in order to explore the vast quan-
tity of data that we are accumulating and identify interesting
patterns (i.e., repetitive behaviors of interest) that could be
further investigated by our ATM stewardship team.

In the meantime, we are in the process of exporting APSS
in other centres where we believe it will help reduce inappro-
priate ATM prescribing and improve patient health. The re-
vision process used by APSS could also be adapted to other
drugs since it already manages the patients’ prescriptions,
vital signs, and laboratory and microbiology test results.
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