
Reactive Planning in a Motivated Behavioral Architecture

Éric Beaudry, Yannick Brosseau, Carle Côté, Clément Raı̈evsky,
Dominic Létourneau, Froduald Kabanza, François Michaud

Université de Sherbrooke
Sherbrooke (Québec) CANADA J1K 2R1

{laborius-challenge}@listes.USherbrooke.ca

Abstract

To operate in natural environmental settings, au-
tonomous mobile robots need more than just the ability
to navigate in the world, react to perceived situations or
follow pre-determined strategies: they must be able to
plan and to adapt those plans according to the robot’s
capabilities and the situations encountered. Naviga-
tion, simultaneous localization and mapping, percep-
tion, motivations, planning, etc., are capabilities that
contribute to the decision-making processes of an au-
tonomous robot. How can they be integrated while
preserving their underlying principles, and not make
the planner or other capabilities a central element on
which everything else relies on? In this paper, we ad-
dress this question with an architectural methodology
that uses a planner along with other independent moti-
vational sources to influence the selection of behavior-
producing modules. Influences of the planner over other
motivational sources are demonstrated in the context of
the AAAI Challenge.

Introduction
The AAAI Mobile Robot Challenge (or simply the AAAI
Challenge) is a rich setup for working toward human-like
intelligence of autonomous mobile robots operating in real
life settings. Introduced in 1999, it consists of having a robot
enter the conference site, find the registration desk, register,
perform volunteer duties and give a presentation (Maxwell
et al. 2004). These specifications imply that robots must be
able of autonomous navigation in the world, planning ahead
a strategy for getting through the different steps of the AAAI
Challenge (such as registering, going to the presentation
room, and making a presentation) and adapt to the occur-
rence of unanticipated situations (for instance when interact-
ing with people). Obstacle avoidance, navigation, localiza-
tion, mapping, planning, modeling, recognition, searching,
tracking, interaction, cooperation, decision-making, just to
name a few, are good examples of recently developed ca-
pabilities for making a mobile robot act as an intelligent

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

and useful agent in the real world. Such capabilities go
from purely reactive approaches to deliberative reasoning
over knowledge abstractions. Assuming that both types of
approaches are required in designing autonomous machines
for real life settings, a lot still remain to be understood about
the nature of the boundary between deliberation and reac-
tion (Arkin 1998). Acquiring a better understanding of how
to integrate decision-making capabilities is a necessary step
in designing mobile robots that can manifest high-level in-
telligence in real life settings.

Research on hybrid deliberative/reactive architectures for
mobile robots is oriented toward solving this question, with
approaches based on hierarchical integration of planning
and reaction, planning to guide reaction, or coupling plan-
ning and reacting (Arkin 1998). In most of them, plan-
ning always remain a central element in the decision-making
processes. The decisions about which features are to be
handled using an automated planning system, and which
ones are to be managed by other decision-making mod-
ules, are ultimately a matter of design choices that depend
on the planner’s capabilities. We may choose to ignore
uncertainty during the planning phase by generating de-
terministic plans that are sequences of actions, and mon-
itoring failures to re-invoke the planner whenever neces-
sary. This is the strategy used with Xavier (Haigh & Veloso
1998). It is also conceivable not to involve any auto-
mated planning at all and still manage to make the robot
accomplish complex tasks, as did many teams participat-
ing in previous AAAI Challenges (Michaud et al. 2001;
Maxwell et al. 2004). Therefore, other mechanisms may be
useful to complement the planner’s capabilities in the robot’s
decision-making processes.

To do so, the architectural methodology we are de-
veloping is based on the notion of motivated selection
of behavior-producing modules. The general idea is to
have different motivational sources such as perceptual in-
fluences, pre-determined scenarios, navigation algorithms, a
planner and alike, share knowledge about how to activate
and use behavior-producing modules (which can be typical
behavior-based reactive controllers with or without internal
states, goal-oriented behaviors or other types of behavior).



Using different motivational sources allows efficient use of
various influences regarding the tasks the robot must accom-
plish, while not having to rely on only one of them for the
robot to work.

The paper is organized as follows. After presenting re-
lated work, we present our hybrid architectural methodol-
ogy and its underlying reactive planner. This is followed
with a presentation and analysis of trials done in simulation
and with a mobile robot, using the AAAI Challenge as the
experimental setup, and with perspectives for future work.

Related Work
Most architectures that integrate task planning and robot
execution interleave these two processes. In particu-
lar, ROGUE is an architecture integrating a task planner
(PRODIGY) with a Xavier’s path planner and navigation ca-
pabilities (Haigh & Veloso 1998). PRODIGY takes as input
an initial state and a goal state condition, and produces a
plan that is a sequence of actions that if executed, and if
things happen as planned for, the robot reaches a new state
satisfying the goal condition. As planning is interleaved
with execution, PRODIGY can update its current planning
state and orient its backtracking to respond to changes in
the environment, which increases the likelihood of overall
plan success. However, since the robot always pick the
next action to execute as the next action in the plan gen-
erated by PRODIGY, whether complete or still under con-
struction, it is clear that ROGUE inherits all the limitations
of PRODIGY. Many other approaches follow this model of
interleaving planning and execution, but differ in the under-
lying robot platforms, in additional strategies for plan mon-
itoring and recovery, and in their capabilities such as han-
dling metric time constraints (e.g., see (Chien et al. 2000;
Lemai & Ingrand 2004; Ambros-Ingerson & Steel 1998)).

Many other robot architectures provide an Executive in-
terface between high-level deliberative processes (includ-
ing planning) and lower-level ones. For instance, Task De-
scription Language (TDL) (Simmons & Apfelbaum 1998)
is a language for describing robot behaviors as task trees,
such as inner nodes correspond to abstract tasks or goals
and leaf nodes correspond to commands directly executable
by the robot. A planner synthesize such task-tree behav-
iors, thereby somehow determining the action executed by
the robot (i.e., commands at the leaf nodes of the task tree).
Fundamentally this is as in the other examples above (e.g.,
Xavier and PRODIGY), the difference with TDL being to
provide a rich language for specifying tasks.

In our case, we chose to follow the ‘planning to guide
reaction’ (PGR) model, in which the planner influences the
configuration of behavior-producing modules rather than be-
ing responsible for completely determining the actions of
the robot. For TDL to reassemble the PGR approach we are
interested in, the command on the leaf of a task tree that
would be computed by a planner, would have to compete
with commands from other behaviors potentially aimed at
the same goal. In other words, we do not want the planner
to synthesize behavior but to only be a source of influence.

Propice-Plan is one illustration of PGR based on the
Procedural Reasoning System (PRS) (Ingrand & Despouys

2001). Robot behaviors are implemented by rule-based tem-
plates, called operators, attached with robot executable pro-
cedures. Precondition and effect specifications are also at-
tached to these templates, so that when the robot is exe-
cuting the procedure, Propice-plan simulates its control en-
gine ahead of real-time using, not the executable procedures,
but the more abstract action and precondition specifications.
Traces of this simulation are then exploited by execution en-
gine to anticipate failures. Our hybrid architectural method-
ology extends the PGR model by adding influences other
than the ones from a planner (like pre-determined strate-
gies drive by perceptual conditions, temporally-influenced
activation variables acting as motives, etc.) to guide the
selection and configuration of behavior-producing modules.
Compared to Propice-Plan, our architecture is more process-
oriented (a feature inherited from EMIB (Michaud 2002)),
whereas Propice-Plan is more production-rule oriented (a
feature inherited from PRS). Therefore, the planner is no
longer a central component of the architecture. Limiting
the scope of the planner’s influence makes it possible to use
more suitable mechanisms to handle unpredictable events,
reuse planning algorithms developed in previous work (just
like the use of PRODIGY in ROGUE (Haigh & Veloso
1997)), and facilitates robot reconfiguration to new capabil-
ities and applications.

Motivated Behavioral Architectural (MBA)
Methodology

Figure 1 represents the Motivated Behavioral Architecture
(MBA). Behavior-producing modules (BPM, or behaviors)
constitute the basic MBA’s components that control the
robot’s actuators. The actual use of a behavior is deter-
mined based on its operation conditions and the arbitration
scheme. Arbitration might be priority-based, fusion (e.g.,
motor-schemas), action selection or defuzzification, depend-
ing on the implementation. Operation conditions come from
percepts, internal states and activations values given by the
Selection module. These activation values (BPM.Activation
reflect the robot’s intentions derived from interactions be-
tween motivational sources.

In order to keep motivational sources as generic and inde-
pendent from each other as possible, their interactions occur
through a task-oriented data structure shared in the Dynamic
Task Workspace (DTW). Tasks are organized in a hierar-
chy using a tree-like structure, from high-level/abstract tasks
(e.g., deliver message), to primitive/BPM-related tasks (e.g.,
avoid obstacles). Motivational sources can add or modify
tasks in the DTW (through requests m), request information
about them (q) or subscribe to events (e) regarding their sta-
tus. They also issue behavior recommendations (rec) con-
cerning tasks: these recommendations can either be posi-
tive, negative or neutral, regarding the desirability of allow-
ing the robot to accomplish specific tasks. The Selection
module determines which tasks to accomplish by selecting
those that are more desirable than undesirable. The map-
ping between tasks and BPM as for the communication of
parameters (p) and behavior results (res) are managed by
the System Know How (SNOW) module. BPM.Exploitation



Figure 1: MBA architectural methodology.

represents the effective use of BPM, an important informa-
tion about the robot’s interactions within the environment. A
BPM that is activated may or may not be used to control the
robot, depending on the sensory conditions it monitors and
the arbitration mechanism used to coordinate the robot’s be-
haviors. So, an activated behavior is exploited only when it
provides commands that actually control the robot.

Motivational sources are the drives that prompts the robot
to act in a certain way. They are influenced by percepts, re-
sults and states of pursued goals, and from monitoring the
robot’s tasks. Motivations in this work are categorized as ei-
ther instinctual or rational. Instinctual motivations provide
basic operation of the robot using simple strategies driven
by perceptual and internal states influences. Rational moti-
vations involve abstract reasoning over knowledge acquire
or innate about the world. We consider rational motivations
here to have a greater priority in case of conflicts with in-
stinctual ones.

All MBA’s modules run concurrently to derive goals and
expressing behavior recommendations. For the work re-
ported in this paper, the architecture uses six BPM and seven
motivations. The BPM are the following: Moves, generating
a constant forward velocity; Rest, stopping the robot; Goto,
allowing the robot to move to a specific location; Avoid,
making the robot move safely in the environment; Local-
ize, determining the robot position on a given map accord-
ing to laser and odometry data. This last BPM is a module
that does not give direct commands to the robot’s actuators.
It provides information to other BPM or motivational mod-
ules through the SNOW and DTW, only when a motivational
source consider this capability appropriate (e.g., when suf-
ficient processing power is available). Subsumption is used
for BPM arbitration. For instinctual motivations, Survive
urges the robot to maintain its physical integrity by recom-
mending the obstacle avoidance task. Obey is a process al-
lowing to directly take user’s requests for tasks. Explore
motivates the robot to discover its environment. Rest makes
the robot stay in position and guard an area. Select Task
selects one high-level task when none has yet been priori-

tized: for instance, for tasks that require to go to a specific
location, this motivation selects the task for which the robot
is physically closest to. For rational motivations, two mod-
ules are used to provide motivations that are more related to
cognitive processes. Navigate determines a path to go to a
specific location, as required for tasks in the DTW. Plan is
where a planner can influence the decisions of the robot. In
MBA, the role of the planner is to provide the robot with the
capability of determining which primitive tasks, and which
sequenced order of them, are needed to accomplish high-
level tasks under temporal constraints and limited capabili-
ties (as defined by the set of BPM). The following section
provides more detailed explanations regarding the planning
capabilities in MBA.

Reactive Planning in MBA
Planning problems in relation to the AAAI Challenge in-
volve metric time constraints (e.g., the robot has to be on
time for its presentation), resource constraints (e.g., com-
plex robot processes such as navigation, map registration
and planning consume processing power), safety goals gen-
erated reactively at unpredicted times (e.g., charging the bat-
tery whenever it becomes low), preferences among goals
(e.g., it is more critical to charge the battery than doing any-
thing else, or presenting on time has priority over helping
other attendees) and uncertainty in plan execution (e.g., the
time it takes to navigate from one point to another depends
on the accuracy of the robot’s navigation capability).

To handle this kind of planning problem, we first look for
existing planners that support domain definition with metrics
and temporal actions. We focused on planners that support
PDDL 2.2 with timed initial literal. Since we actually use
a planner like a black box, our MBA architecture supports
several planners. These planners are SAPA (Do & Kamb-
hampati 2003), LPG (Gerevini, Saetti, & Serina 2003) and
TLPlan (Bacchus & Kabanza 2000). We can also use a cus-
tom planner we developed, named ConfPlan (Beaudry, Ka-
banza, & Michaud 2005), based on an HTN (Hierarchical
Task Network) approach. For now, planning reactivity is
limited to launch the planner when a new task occur, when
a plan fails, or when the operation conditions change. Plan
failure is detected when a recommended primitive task fails
or when a primitive task progresses slower than anticipated,
causing a violation of temporal constraints or task achiev-
ability.

Reactive Planning Loop
The procedure for a comprehensive description of our reac-
tive planner is described in Algorithm 1. The planner main-
tains a current plan (P ), a current set of high-level tasks (or
goals G), the current action (primitive task) of the plan (a),
the current environment features relevant to plan (S), and
an auxiliary variable e for incoming events from other MBA
modules. For instance, when a new goal arrive (line 6) or
is cancelled (line 8), the goals list is updated and the plan-
ner compute a new plan from this. From lines 17 to 22,
replanning is done when the currently sensed information
invalidates the plan. The function ISPLANINVALID checks



the validity of the current plan by projecting its action from
the current sensed state. Similarly, at ActionTimedout (line
23), when an action takes too much time (i.e., navigation is
slower due to the presence of an obstacle that forces to take
a longer path), a new plan is needed. If the planner fails
to generate a new one, it means that one or more goals are
now unreachable (i.e., presentation is not yet possible due to
time constraints). In this case, the current high-level task G
is cancelled.

Algorithm 1 Reactive Planning Procedure Sketch

1. Sketch Algorithm MBAPLANNER()
2. Variables Plan P, GoalList G,
. State S, Action a, Event e

3. while (true)
4. e= WaitNextEvent()
5. Case (e)
6. NewGoal(g) :
7. P = CallPlanner(S, G = G + g);
8. CancelledGoal(g) :
9. P = CallPlanner(S, G = G - g);

10. ActionCompleted(a) :
11. P = P - a; send P.nextAction();
12. ActionFailed(a) :
13. P = CallPlanner(S, G);
14. if (plan=FAILURE)
15. ga = GoalAssociatedTo(a);
16. P = CallPlanner(S, G = G - ga);
17. SensedData(d) :
18. newS = S.update(d);
19. if (newS 6= S)
20. S = NewS;
21. if (isPlanInvalid())
22. P = CallPlanner(S, G);
23. ActionTimedOut(a):
24. P = CallPlanner(S, G);
25. if (P=FAILURE)
26. g = GoalAssociatedTo(a)
27. P = CallPlanner(S, G = G - g);

Experimental Setup and Results
We experimented the above architecture in simulation us-
ing Player/Stage (Vaughan, Gerkey, & Howard 2003) (on
a Pentium IV 3.2 GHz computer) and on a wheeled robot
platform (also using Player for the low-level interface to the
laser range finder). The robotic platform is equipped with a
laser range finder and one laptop computer (Pentium M 2.0
GHz). High-level programming is done using RobotFlow
and MARIE (Cote et al. 2004). RobotFlow/FlowDesigner
is a modular data-flow programming environment that fa-
cilitates visualization and understanding of what is really
happening in the robot’s control loops, sensors, actuators.
MARIE is a middleware allowing multiple applications, op-
erating on one or multiple machines/OS, to work together in
an implementation of mobile robotic nature. This environ-
ment proposes a software architecture that avoids making a
choice on particular programming tools, and makes it possi-
ble to share code and applications. For instance, through
MARIE, CARMEN’s path planner and localizer (Thrun,

Fox, & Burgard 1998) are used in the Navigate motivation
and the Localize BPM, respectively. Those programming
environments makes it possible to reuse all the software im-
plementation for each setup, except for odometry data and
motor commands that needed to be treated differently.

To experiment and validate the MBA architecture, we cre-
ated a set of scenarios inspired from the AAAI Challenge.
These simplified scenarios used nine tasks in the DTW, tasks
that are constrained (i.e., they are defined by locations or
time parameters) or unconstrained:

• Avoid (A). Unconstrained task submitted by Survive,
making the robot navigate safely in its environment by
avoiding obstacles.

• Deliver-Message (D). Constrained task submitted by
Obey. It allows the robot to deliver a message from one lo-
cation (parameter #1) to another location (parameter #2).

• Explore (E). Unconstrained task submitted by the Explore
motivational source, making the robot move to different
locations in the environment.

• Goto (G2). Constrained task generated by Navigate and
allowing the robot to move to a specific point (parame-
ter #1) on its map.

• Guard (G). Constrained task making the robot guard an
area (parameter #1), at a specific time (parameter #2) for
a given period (parameter #3). This task is submitted by
Obey.

• Localize (L). Unconstrained task submitted by Explore,
allowing the robot to localize itself in its environment.

• ProceedTo (P). Constrained task to move the robot at a
specified destination (parameter #1). This task can be sub-
mitted by either Plan or Select Task.

• Rest (R). Unconstrained task making the robot remain at
the same location. This task can be submitted by Plan and
Guard.

• Wander (W). Unconstrained task submitted by Explore,
making the robot navigate randomly in its environment.

To illustrate the intended role of the planner in MBA’s
decision-making process, trials with and without the plan-
ner have been executed. When the planner is activated, we
expect tasks to be organized and scheduled in an optimal or
sub-optimal way, otherwise the robot still will accomplish
tasks using the Select Task motivation but without consider-
ing time constraints.

To work, our planner uses its own world and state rep-
resentation. Its world representation is characterized by a
list of waypoints, a table of distances for the shortest paths
between all pairs of waypoints, and the average velocity of
the robot. Based on this model, the planner can derive the
travel time between locations. Its state representation is de-
fined by the current time and the robot’s nearest (or current)
waypoint. Operators in our domain are Goto, Guard, Get-
Message and Give-Message. For each operator, a list of pre-
conditions and effects are defined. The optimization criteria
are minimizing the distance travel and the time required to
accomplish the task. Note that other metrics could have been



Figure 2: Office floor map for experimentation.

Table 1: Trace of trial #1.
Time Primitive Tasks (Motivational Source/parameters)

00:00 A(S), E(E), L(E), W(E)
03:20 A(S), E(E), L(E), W(E), G(O/p6), P(ST/p6)
04:12 A(S), E(E), L(E), G(O/p6), D(O/p3,p8), P(ST/p3)
06:20 A(S), E(E), L(E), G(O/p6), D(O/p3,p8), P(ST/p6)
08:29 A(S), E(E), L(E), G(O/p6), D(O/p3,p8), P(ST/p8)
08:44 A(S), E(E), L(E), G(O/p6), D(O/p3,p8), P(ST/p6)
12:42 A(S), E(E), L(E), G(O/p6), D(O/p3,p8)
13:33 A(S), E(E), L(E), D(O/p3,p8), P(ST/p8)
16:31 A(S), E(E), L(E), W(E), D(O/p3,p8)
17:10 A(S), E(E), L(E), W(E)

used, such as minimizing energetic consumption: we chose
not to consider this metric since it will be handle eventually
by an instinctual motivational source.

The first set of trials consists of placing the robot at loca-
tion p1 and requesting a Guard task (using the Obey motiva-
tional source at specific times) at location p6 under a fixed
length of time (200 sec). When this task occurs, the planner
creates a plan to accomplish this task, and the robot moves to
p6. During that time, a Deliver-Message task from p3 to p8

is requested. A new plan is therefore needed to include this
new task, and the robot’s next action depends on the time
constraints on the Guard task.

Trial #1 (Table 1) illustrates a case with the planner inhib-
ited, intentionally or because it cannot provide a plan (e.g., it
may require too much processing time). Initially, the robot
wanders until it receives the Guard task at time 3:20. The
Select Task module suggests a ProceedTo p6 task. At time
4:12, the Deliver-Message task is added. Since the robot is
closer to p3 than to p6, Select Task suggests a ProceedTo
p3 task. At p3 it gets the message and proceed to p6, the
nearest location. This simple task selection mechanism can
cause some oscillations in the pursued tasks, as shown at
8:29 and 8:44: for a short period of time, the robot comes

Table 2: Trace of trial #2.
Time Primitive Tasks (Motivational Source/parameters)

00:00 A(S), E(E), L(E), W(E)
00:26 A(S), E(E), L(E), W(E), G(O/p6)
00:27 A(S), E(E), L(E), W(E), G(O/p6), P(ST/p1)
00:27 A(S), E(E), L(E), G(O/p6), P(ST/p1)
01:39 A(S), E(E), L(E), G(O/p6), P(ST/p1), D(O/p3,p8)
01:40 A(S), E(E), L(E), G(O/p6), P(ST/p3), D(O/p3,p8)
03:34 A(S), E(E), L(E), G(O/p6), P(ST/p3), D(O/p3,p8)
03:37 A(S), E(E), L(E), G(O/p6), P(ST/p3), D(O/p3,p8)
03:38 A(S), E(E), L(E), G(O/p6), P(P/p6), D(O/p3,p8)
03:43 A(S), E(E), L(E), G(O/p6), P(P/p6), D(O/p3,p8)
05:39 A(S), E(E), L(E), G(O/p6), P(ST/p6), D(O/p3,p8)
07:31 A(S), E(E), L(E), G(O/p6), D(O/p3,p8)
09:35 A(S), E(E), L(E), G(O/p6), D(O/p3,p8), R(P)
09:51 A(S), E(E), L(E), W(E), G(O/p6), D(O/p3,p8), R(P)
16:04 A(S), E(E), L(E), W(E), P(P/p8), D(O/p3,p8)
16:10 A(S), E(E), L(E), P(P/p8), D(O/p3,p8)
17:48 A(S), E(E), L(E), W(E)

Table 3: Trace of trial #3.
Time Primitive Tasks (Motivational Source/parameters)

00:00 A(Sur), E(E), L(E), W(E)
08:02 A(Sur), E(E), L(E), W(E), G(O/p1), P(ST/p1)
08:08 A(Sur), E(E), L(E), G(O/p1), P(ST/p1)
09:20 A(Sur), E(E), L(E), G(O/p1)
10:54 A(Sur), E(E), L(E), G(O/p1), D(O/p2, p7)
14:54 A(Sur), E(E), L(E), D(O/p2, p7)
15:35 A(Sur), E(E), L(E), D(O/p2, p7), P(ST/p2)
18:32 A(Sur), E(E), L(E), D(O/p2, p7)
18:38 A(Sur), E(E), L(E), D(O/p2, p7), P(ST/p7)
21:12 A(Sur), E(E), L(E), W(E)
21:35 A(Sur), E(E), L(E), W(E), G(O/p6), P(P/p6)
21:42 A(Sur), E(E), L(E), G(O/p6), P(P/p6)
23:04 A(Sur), E(E), L(E), G(O/p6)
24:47 A(Sur), E(E), L(E), W(E), G(O/p6), R(P/p6)

closer to p8 than p6. Eventually, the robot arrives at p6, ful-
fill the Guard task, and then proceeds to p8 since it is the
only task left. The robot delivers the message at time 17:10.
Task scheduling is done opportunistically, without consider-
ing time constraints.

With the planner activated, trial #2 (Table 2) illustrates a
case when the robot has sufficient time to get the message
at p3, but cannot deliver to p8 before it is time to execute
its Guard task at p6. In the first part of the trial, Select
Task is faster than Plan to initiate a ProceedTo task to p1,
and Plan provides the same solution shortly afterwards. At
time 20:32, the robot gets a message at location p3, and Plan
determines that there is not enough time left to deliver the
message before Guard must begin. Therefore, it adds a Pro-
ceedTo task to p6 location. From time 26:29 to time 32:58,
the robot remains at p6 to fulfill its Guard task. Once Guard
done, at time 32:58 Plan adds a ProceedTo task to p8 loca-
tion.

Trial #3 (Table 3) is done with the robotic platform. At
the beginning, the planner is inhibited and the robot does a
Guard task at location p1. A Deliver-Message task from p1

to p2 and one from p2 to p7 are added next. The robot ends



its Guard task and, being already at p1, gets the first mes-
sage and goes to p2. At p2, it delivers the first message and
asks for the second. The robot then goes to p7 and delivers
the second message. At that time, the planner is activated
and a Guard task at p6 is requested. The robot proceeds
to p6 and rest. The main objective of this is to show that
MBA is able to make coherent decisions in a real dynamic
environment under unpredictable situations (e.g., people in
the robot’s way and differences with the environment model
such as opened doors and obstacles), and that the MBA ar-
chitecture can adapt its decision-making process to on-line
addition of the planner during a trial.

Conclusion
The intelligence of a system depends on its sensing, acting
and processing capabilities, not taken individually but as a
whole. The MBA architectural methodology offers one so-
lution by integrating different motivational sources such as
a planner to influence the decision-making process of an au-
tonomous mobile robot. Just using a planner to select be-
havioral modes would require frequent generation of plans
to handle dynamic changes in real life settings. Not using
a planner makes it difficult to anticipate and reorganize be-
havioral strategies. Our objective is to try to find the right
balance between the two, using the planner as a motivational
source allowing the robot to act rationally by selecting and
sequencing primitive tasks.

Results presented in this paper are preliminary as we are
still preparing for the AAAI Challenge. Extensive tests are
underway to validate the influences of the planner and the
other motivational sources on MBA’s decision-making pro-
cess. In future work, we want to refine our planner to gen-
erate plans more suitable for plan repairing and for more
complex scenarios involving a higher number of tasks, such
as localizing a waiting line (to register to the conference) or
searching for a docking station. Currently these are handled
by non-planned modules; planned tasks would improve time
management for the overall robot mission and for accepting
more volunteer duties. Handling more tasks makes it harder
to replan from scratch every time a new goal is added or
canceled. We also want to add more motivational sources
and increase the robot’s capabilities, validating the MBA ar-
chitectural methodology in social operational settings with
humans and other mobile robots.

Acknowledgments
F. Michaud holds the Canada Research Chair (CRC) in Mo-
bile Robotics and Autonomous Intelligent Systems. Support
for this work is provided by the Natural Sciences and Engi-
neering Research Council of Canada, the Canada Research
Chair program and the Canadian Foundation for Innovation.

References
Ambros-Ingerson, J., and Steel, S. 1998. Integrating plan-
ning, execution and monitoring. In Proc. National Conf.
on Artificial Intelligence.
Arkin, R. C. 1998. Behavior-Based Robotics. The MIT
Press.

Bacchus, F., and Kabanza, F. 2000. Using temporal logic
to express search control knowledge for planning. Artificial
Intelligence 116(1-2).
Beaudry, E.; Kabanza, F.; and Michaud, F. 2005. Plan-
ning for a mobile robot to attend a conference. In Proc.
Canadian AI Conf.
Chien, S.; Knight, R.; Stechert, A.; Sherwood, R.; and Ra-
bideau, G. 2000. Using iterative repair to improve the
responsiveness of planning and scheduling. In Proc. Int.
Conf. on Artificial Intelligence Planning and Scheduling.
Cote, C.; Letourneau, D.; Michaud, F.; Valin, J.-M.;
Brosseau, Y.; Raievsky, C.; Lemay, M.; and Tran, V. 2004.
Code reusability tools for programming mobile robots. In
Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems.
Do, M., and Kambhampati, S. 2003. Sapa: A scalable
multi-objective metric temporal planner. J. Artificial Intel-
ligence Research 20:155–194.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning
through stochastic local search and temporal action graphs
in LPG. J. Artificial Intelligence Research 20:239–290.
Haigh, K., and Veloso, M. 1997. Interleaving planning
and robot execution for asynchronous user requests. Au-
tonomous Robots.
Haigh, K., and Veloso, M. 1998. Planning, execution and
learning in a robotic agent. In Proc. Int. Conf. on Artificial
Intelligence Planning Systems, 120–127.
Ingrand, F., and Despouys, O. 2001. Extending procedural
reasoning system toward robot actions planning. In Proc.
IEEE Int. Conf. on Robotics and Automation.
Lemai, S., and Ingrand, F. 2004. Interleaving temporal
planning and execution in robotics domains. In Proc. Na-
tional Conf. on Artificial Intelligence.
Maxwell, B.; Smart, W.; Jacoff, A.; Casper, J.; Weiss, B.;
Scholtz, J.; Yanco, H.; Micire, M.; Stroupe, A.; Stormont,
D.; and Lauwers, T. 2004. 2003 AAAI robot competition
and exhibition. AI Magazine 25(2):68–80.
Michaud, F.; Audet, J.; Letourneau, D.; Lussier, L.;
Theberge-Turmel, C.; and Caron, S. 2001. Experiences
with an autonomous robot attending the AAAI conference.
IEEE Intelligent Systems 16(5):23–29.
Michaud, F. 2002. EMIB – Computational architecture
based on emotion and motivation for intentional selection
and configuration of behaviour-producing modules. Cog-
nitive Science Quaterly 3-4:340–361.
Simmons, R., and Apfelbaum, D. 1998. A task description
language for robot control. In Proc. IEEE/RSJ Int. Conf.
Intelligent Robotics and Systems.
Thrun, S.; Fox, D.; and Burgard, W. 1998. A probabilistic
approach to concurrent mapping and localization for mo-
bile robots. Machine Learning 31:29–53.
Vaughan, R. T.; Gerkey, B. P.; and Howard, A. 2003. On
device abstractions for portable, reusable robot code. In
Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems,
2421–2427.


