
Reactive Planning in a Motivated Behavioral Architecture
Éric Beaudry, Yannick Brosseau, Carle Côté, Clément Raïevsky, Dominic Létourneau, Froduald Kabanza, François Michaud

Université de Sherbrooke, Québec, Canada
http://www.gel.usherb.ca/laborius/ - laborius-challenge@listes.usherbrooke.ca

Abstract

To operate in natural environmental settings, autonomous mobile robots need more
than just the ability to navigate in the world, react to perceived situations or follow
predetermined strategies: they must be able to plan and to adapt those plans
according to the robot's capabilities and the situations encountered. Navigation,
simultaneous localization and mapping, perception, motivations, planning, etc., are
capabilities that contribute to the decision-making processes of an autonomous robot.
How can they be integrated while preserving their underlying principles, and not make
the planner or other capabilities a central element on which everything else relies on? In
this paper, we address this question with an architectural methodology that uses a
planner along with other independent motivational sources to influence the selection
of behavior producing modules. Influences of the planner over other motivational
sources are demonstrated in the context of the AAAI Challenge.

Motivated Behavioral Architecture (MBA)

Motivations
Motivational modules (MM) are high level independent modules that influence the
way that the robot is behaving. MM can add, modify, query and recommend tasks
in DTW.

Dynamic Task Workspace (DTW)
DTW is a central component that organizes tasks in a hierarchy using a tree-like
structure, from high-level/abstract tasks to primitive/BPM-related tasks.

System Know How (SNOW)
The SNOW is a rule-based template that maps low level tasks with BPM.

Behavior-Producing Modules (BPM)
BPMs define how particular percepts and conditions influences the control of the
robot’s actuators. An arbitration mechanism (priority-based in this implementation,
but other methods like fuzzy logic could be used) filters the commands generated
by BPMs before applying them to the actuators.

Reactive Planning Process Experimentation Setup : AAAI Challenge 2005

Exemples, Tests and Results

Conclusion

Tasks Mangagement and Selection in MBA

Inside the Plan motivation. we introduce a reactive planning process. The Planner is decomposed in two sub-processes that
can run concurrently. The first one is the ExecMonitor sub-process (for execution and monitoring) that communicates with
the Dynamic Task Workspace to extract the robot’s current mission. It also adds and recommends lower level tasks to
achieve high-level tasks in DTW. The Planning sub-process invokes a planner for planning the mission. The reactive planning
process is generic and is not limited to one particular planner.

MBAPlanner_ExecMonitor() :
while(true) :
 e = waitForEventOrTimeout();
 switch case(e) :

newTask(t) :
if(isPlannableTask(t)) :

mission+=t;
needreplan = true;

cancelledTask(t) :
if(mission.contains(t)) :

mission -= t;
needreplan = true;
if(currenttask.isDecendendOf(t)) :

currenttask = <notask>;
completedTask(t) :

if(t == currenttask) :
if(currenttask.isLastDecendendOf(currenttask.parent)) :

workspace.SetCompleted(currentTask.parent);
currenttask = plan.nextTask();

if(mission.contains(t)) :
mission -= t;
needreplan |= plan.containsDecendantOf(t);

failedTask(t) :
if(t == currenttask) :

currenttask = <notask>
needreplan = true;

sensedData(d) :
currentstate.update(d);

needreplan |= plan.validate(currentstate)==FAILURE;
if(needreplan):

resetPlanningProcess();
workspace.setRecommendation(currenttask);

MBAPlanner_Planning() :
while(true) :

if(plan.progressFasterThanPlanned() &&
 !plan.nextTask().isReady(now + planningAvgDuration))

needreplan = true;

 if(needreplan) :
needreplan = false;

for each task t in mission :
if(planner.fastplan(t) == FAILURE) :

mission -= t;
workspace.failedTask(t);

for each task pair (t1, t2) :
tempmission = {t1, t2}
if(planner.fastplan(tempmission) == FAILURE):

mission -= lowestprioritytask(t1, t2);

while(newplan == FAILURE) :
newplan = planner.plan(currenttask, mission);
if(newplan == FAILURE) :

mission -= lowestprioritytask(mission);

plan = newplan;
currenttask = plan.nextTask();
monitorexec.sendTimeoutEvent();

// Detect and accept the possibility of an opportunity

// Plan as needed

// First : removing unachievable tasks

// Second : try to detect mutex tasks by sufficient condition

Task Life Cycle

Office map experimentation

Testing Scenarios
To experiment and validate the MBA
architecture, we created a set of scenarios
inspired from the AAAI Challenge. In these
simplified scenarios, the robot has to
perform tasks specified by people in a
simulated conference site.

1 GiveConference : make a presentation at
a predetermined location and at a
specific time.
1 AttendConference : l i s ten to a

presentation at a specific location during a
fixed period of time.
1 AttendPoster : look at a poster, specified

by a location and a duration, during the
poster session time window.
1 DeliverMessage : receive a message to a

person at an initial location and bring the
message to another person at the
destination location.
1 Guard : guard a location during a fixed

time period.
1 Explore : explore the environment by doing

wandering and looking for interesting
things (e.g.: tracking symbols).
1 OpenInteraction : interact with other

attendees. Help people or receive help as
needed.

Hypothesis
1 The metric map of the environment is

already known (no mapping to do).
1 Locations are partially known : the robot

has to found the location position on
the map by asking help or searching for
landmark.
1 Tasks can be given using a graphical

interface on the robot and/or directly
from a mission text file.

Hardware
We use U2S/Spartacus, a UdeS wheeled
robot platform equipped with a laser
ranger finder for navigation. This robot is
controlled by a laptop computer .

Software

Player : low- level in ter face for
communicating with the hardware.
MARIE : software integration environment.
FlowDesigner / RobotFlow : execution
control platform for BPM implementation.
ConfPlan : a HTN-based planner with
anytime and metrics capabilities.
CARMEN : localization and path planning
for position tracking and navigation.

Planning Domain
1 Navigation table with distances

between each locat ion pai r s.
Dynamically computed as new
locations are found.
1 Average speed of the robot.
1 Operators with preconditions and

effects modeling the robot’s actions.
1 HTN task templates as search controls.
1 Optimization criteria :

Complementarity of Motivational Modules

1

p1

p2

p3
p4

p5

p6

p7

p8

p9 p10
p11

Initial State

p1

p2

p3
p4

p5

p6

p7

p8

p9 p10
p11

time=0, RobotAt(p1)

Mission

!Guard p6 at time=0:15 for
a duration of 0:05.
!DeliverMessage from c1 to
p7.

* Location c1 is unknown at
start.

2

Planner Plan

Since c1 position is unknown, the
planner cannot make a good
estimation on how to reach it. So,
to be sure to guarantee the
accomplishment of the Guard
task, it assumes the worst case, that
is c1 is very far. The consequence is
that going to p6 is the first action.

3

Instinctive Explore

Whi le the P lan MM is
execut ing i t s p lan by
r e c o m m e n d i n g a
ProceedTo(p6) task, the
E x p l o r e M M i s
recommending f ind ing
location c1. This forces the
GUI to ask for help. A person
clicks on the robot’s touch
screen to show c1 position on
the displayed map.

4

Planner Replan

When the Plan MM is notified
about the position of c1
(between p2 and p7), the
planner is reinvoked to find a
new plan. Because AskMessage
and GiveMessage is feasible
before Guard, the planner
chooses this order.

5

Trace

p1

p2

p3
p4

p5

p6

p7

p8

p9 p10
p11

t=0:02
Receive

Help

t=0:06
Ask

Message

t=0:08
Give

Message

t=0:15
Guard

Mission Optimization and Failure Detection from the Planner

0:00 1:00

Goto(p2)1.

AskMessage(p2,m1)2.

Goto(p3)3.

GiveMessage(p3,m1)4.

Goto(p9)5.

AskMessage(p9,m2)6.

Goto(p6)7.

GiveMessage(p6,m2)8.

Goto(p4)9.

GuardLocation(p4, 23m, 5m)10.

Goto(p3)11.

GuardLocation(p3, 36m, 5m)12.

Initial State
! RobotAt(p1)
! time = 0

One objective with the MBA
architecture is not to have one
central module on which all
decisions depend on. At the
same time, the MBA wants to
t a ke a d v a n t a g e o f a
deliberative module (from AI
planning) to improve overall
p e r f o r m a n c e o f t h e
architecture.

To show that MBA is not
centralized on a planner, test
cases demonstrate that the
system can continue to
operate and achieve totally or
partially submitted missions. Optimal plan for this test

We generate random tests
that executed with and
without the planner.

Random Tests
Initial State
- RobotAt(Random_Place)
- time = 0

Mission
- 1 or 2 DeliverMessage with
random origin and
destination places
- 1 or 2 Guard at random
places and times
- 1 or 2 AttendConference at
random places and times

The intelligence of a system depends on its
sens ing, act ing and p rocess ing
capabilities, not taken individually but as a
whole. The work presented here offers one
so lu t ion by in tegrat ing d i f fe rent
motivational sources such as a planner to
influence the decision-making process of
an autonomous mobile robot. Just using a
planner to select behavioral modes would
require frequent generation of plans to
handle dynamic changes in real life
settings. Not using a planner makes it
difficult to anticipate and reorganize
behavioral strategies. Our objective is to try
to find the right balance between the two,
using the planner as a motivational source
allowing the robot to act rationally by
selecting and sequencing primitive tasks.

Acknowledgments
F. Michaud holds the Canada Research Chair (CRC) in Mobile
Robotics and Autonomous Intelligent Systems. Support for this
work is provided by the Natural Sciences and Engineering
Research Council of Canada (NSERC), the Canada Research
Chair program and the Canadian Foundation for Innovation.

Many students on the project are supported by NSERC and by
the Fonds québécois de la recherche sur la nature et les
technologies (FQRNT) programs.

0:00 1:00 2:00

Goto(p6)1.

GuardLocation(p6, 0:15, 0:05)2.

FindPlace(c1)3.

Goto(c1)4.

AskMessage(c1)5.

Goto(p7)6.

GiveMessage(p7)7.

0:00 1:00

Goto(c1)1.

AskMessage(c1)2.

Goto(p7)3.

GiveMessage(p7)4.

Goto(p6)5.

GuardLocation(p6, 0:15, 0:05)6.Task Selection for BPM Activations

Trace with Planner Trace without Planner

p1

p2

p3
p4

p5

p6

p7

p8

p9 p10
p11

p1

p2

p3
p4

p5

p6

p7

p8

p9 p10
p11

Task tt

Task tt

s1

Task tt

s1

Task tt

s1 s2Task tt

s1 s2

Task tt

s1 s2

t

MM2

MM1

MM3

MM4

1. MM adds task t1

2. MM adds child task s12

3. MM handles task s1 and3

 marks it completed

4. MM deletes task s1 and2

 adds child task s25. MM handles task s2 and4

 marks it completed

6. MM deletes task s2 and2

 marks task t completed

8. MM deletes1

 task t

Environment

GUI

Agenda

Mission
! DeliverMessage(p2, p3, m1)
! DeliverMessage(p9, p6, m2)
! Guard(p3, 23m, 5m)
! Guard(p4, 36m, 5m)

Sample Test

t=0:07
AskMessage

t=0:07
AskMessage

t=0:13
GiveMessage

t=0:18
AskMessage

t=0:20
AskMessage

t=0:26
Guard

t=0:36
Guard

t=0:48
AskMessage

t=0:55
GiveMessage

t=0:03
AskMessage

t=0:06
AskMessage

t=0:26
Guardt=0:36

Guard

c1

Dynamic Task Workspace

RestBehavior

AvoidBehavior

AskForHelpBehavior

GotoBehavior

WanderBehavior

Behavior-Producing Modules

GiveConference(p1, t1)

proceedTo(p1)

Goto(x1, y1)

AttendConference(p3, t2)

ProceedTo(p3)FindPlace(p2)

AskForHelp(p2)

DeliverMessage(p1, p2)

Avoid()

GUI GUI GUI

Goto(x2, y2)

Plan Explore Agenda

Survive Navigate NavigateExplore

BPM Selection

Veto Selection Strategy

Rest()

GUI

+
Rec(Plan)=rec

+DR (t) : Direct positive recommendation for task t
-DR (t) : Direct negative recommendation for task t

Rec(t) : Recommendation status for task t

Rest

+
Rec(Plan)=rec +

Rec(Explore)=rec

-
Rec(Agenda)=rec

+Rec(Survive)=rec +
Rec(GUI)=rec

Each MM is responsible for handling a subset of tasks in DTW and each task
can be handled by one or more MM. In the case that more than one MM
can handle a task, they compete for determining how to achieve the task.

ProceedTo(p1)

c1

