
Reactive Planning as a Motivational Source in a Behavior-Based
Architecture

Eric Beaudry, Dominic Letourneau, Froduald Kabanza, Francois Michaud
Universite de Sherbrooke

Sherbrooke, Quebec, Canada
firstname.lastname@USherbrooke.ca

Abstract— Behavior-based architectures use behaviors as
building blocks for decision-making and action execution pro-
cesses. Behaviors are distributed and evaluated in parallel
for the control of the robot, taking real-time inputs from
sensory data and sending real-time commands to effectors.
No centralized components exist in these architectures, each
module carrying out its own strategy independently, making
an overall behavior emerge from the interaction between the
concurrently executed modules and the environment. In this
paper, we discuss the use of a reactive Hierarchical Task
Network (HTN) planner in a behavior-based robot architecture.
The planner in this architecture is not a central component
on which everything else relies on, but acts as one of the
motivational modules recommending tasks to be executed and
influencing the selection and configuration of behaviors. The
planning module allows the behavior-based architecture to deal
with tasks with priorities, flexible time constraints and on-line
planning using a simple but very effective reactive planning
strategy. We demonstrate our approach in the context of making
a robot attend a conference.

I. INTRODUCTION

Situatedness is required for robots dealing with complex,
challenging, often dynamically changing environments with
limited predictability and stability. Behavior-based systems
[1] are typically designed so as to take advantage of the
richness of the interaction dynamics, by exploiting the prop-
erties of situatedness. Planning, on the other hand, requires
the existence of an internal, symbolic representation of the
world, which allows the robot to look ahead into the future
and predict the outcomes of possible actions in various states
to generate plans. The internal model, thus, must be kept
accurate and up-to-date. However, being situated in a noisy
and dynamic world usually makes this impossible [2], [3].
Hybrid architectures attempt to combine both influences on
the decision-making capabilities for a robot. Coupling be-
tween situated control (fast time-scale and directly influenced
by external sensory data) and planning capabilities (longer
time-scale using symbolic representations) is done through
an intermediate component, trying to reconcile the different
representations and operational modes. The construction of
this intermediate component is one of the greatest challenges
in designing hybrid architectures. Through this intermediate
module (also known as the Coordination layer), behaviors
can be reconfigured based on what can be anticipated by the
Planning layer, which can in turn be influenced by how the
behaviors deal with situations occurring in the real world.

Most hybrid architectures use only a deliberative compo-
nent at the Planning layer to influence the Behavior layer.
However, surely other types of influences could be used to
do so, instead of having to represent each of these influences
through a general model of the world to be processed by a
planning algorithm. In fact, behavior-based principles can
be applied at this level too, having a set of distributed and
interacting modules with no centralized world representation
or focus of control. This way, the functionality of the layer
configuring behaviors is neither a property of the robot or the
environment in isolation, but rather a result of the interplay
between them.

We believe that such capability is required for a robot
operating in real life settings, reminiscent of the AAAI Robot
Challenge. Robots in the AAAI Challenge attempt to behave
like a human conference attendee, by autonomously regis-
tering to the conference, making presentations, performing
volunteer duties such as delivering packages on behalf of
people, guiding lost people, maintaining a sufficient level of
their battery energy and navigating to various places in order
to accomplish their tasks. A robot in such setting faces uncer-
tainty at various levels, ranging from being able to localize
itself accurately in the environment to being able to predict
the time required for achieving its tasks. For instance, to
accept volunteer duties in the AAAI Challenge, a robot must
be able to determine the consequences of these duties on its
existing tasks. It must also take into account the importance
of the different tasks. Therefore, to make a decision about its
next action (e.g., Where to go? What should I do first? Do I
accept this duty?), the robot needs a task planner to determine
the consequences of its local decisions on the overall behav-
ior given the tasks it has to accomplish. However, it is not
practical to model and account for all operating conditions
in advance through a planning algorithm. For instance, some
multiple goal-oriented tasks (e.g., looking for a recharging
station opportunistically while carrying on a set of planned
tasks) require different concurrent behavior that cannot all
be determined by the planner. This is in accordance with
our intuition of how humans operate in real life settings:
many goal-driven reactions are result of reflexes or learned
reaction rules, needs, intuition, etc., whereas others result
from elaborate deliberative processes that reason explicitly
about the course of actions such as a planner. We therefore
adopted an approach that interleaves planning and execution

Behaviors
Producing Modules

BPM
Selection

Motivations

Instinctual

Survive

Dynamic Task Workspace

activations

Rational

Task Planner

Percepts Commands

ENVIRONMENT

Navigator

Entertainment

RandomMove

Avoid

Goto

Behaviors
Arbitration

q, e, m

q

Rest

primitive tasks

Fig. 1. Computational architecture.

(through behaviors), conducting a proof-of-concept study on
how such coupling can be done by exploiting the same design
principles of behavior-based system at a more abstract level.

II. COMPUTATIONAL ARCHITECTURE

The computational architecture that we use, shown in
Figure 1, is composed of three principal components:

1) Behavior-producing modules (BPMs) define how
particular percepts and conditions procude commands to
influence the control of the robot’s actuators. The actual
use of a BPM is determined by an arbitration scheme
realized through BPM Arbitration and the BPM’s activation
conditions, as derived by the BPM Selection module.

2) Motivational sources (or Motivations, serving to propel
an agent in a certain direction) recommend the use or the
inhibition of tasks to be accomplished by the robot. Motiva-
tional sources are categorized as either instinctual, rational
or emotional. This is similar to considering that the human
mind is a “committee of the minds” with instinctual, rational,
emotional, and alike minds competing and interacting [4].
Instinctual motivations provide basic operation of the robot
using simple rules. Rational motivations are more related to
cognitive processes, such as navigation and planning.

3) Dynamic Task Workspace (DTW) organizes tasks
in a tree-like structure according to their interdependences,
from high-level/abstract tasks (e.g., deliver message), to
primitive/BPM-related tasks (e.g., avoid obstacles). Through
the DTW, motivations exchange information asynchronously
on how to activate, configure and monitor BPMs. Motiva-
tions can add and modify tasks by submitting modification
requests (m), queries (q) or subscribe to events (e) regarding
the task’s status.

The entertainment instinctual module selects one high-
level task when none has yet been prioritized (e.g. recom-
mending to do entertainment when robot has nothing to do).
Survive instinctual module makes the robot move safely in
the world while monitoring its energy level (recommending
the activation of the recharge behavior making the robot stop
near an electric outlet). For our work, two rational modules
are of interest: a task planner that determines which primitive
tasks and which sequence of these tasks are necessary to

accomplish high-level tasks under time constraints and the
robot’s capabilities (as defined by BPMs), and a navigator
that determines the path to a specific location according to
tasks posted in the DTW. The task planner is invoked online
to account for new arriving tasks from DTW or unpredicted
changes in the environment that make a previously generated
plan inappropriate. Tasks may be submitted by others moti-
vational sources like graphical user interface (robot’s touch
screen) or audio recognition subsystem. External events
include task completion, task failure and every new event
related to new information collected from environment (e.g.
a new location on the map).

III. TASK PLANNING ALGORITHM

Our planning algorithm is based on Hierarchical Task
Networks (HTN) like SHOP2 planner [5]. As in SHOP2 we
specify a planning domain by describing the robot primitive
behaviors in terms of template methods for recursively
decomposing high-level tasks down to primitive tasks, which
are atomic actions. For instance, the task MakePresenta-
tion(p, t1, d) specifies the task of making a presentation at
location p. A time constraint is given by setting parameters;
it should start by time t1 for a duration of d, then end time is
t2 = t1 + d. This task can be decomposed into two simpler
subtasks of (1) going to p and (2) presenting at time t1.
Decompositions of tasks into simpler ones are given with
preconditions under which the decompositions are logically
sound and time constraints for ensuring its consistency.

The planning algorithm consists in searching through the
space of tasks and world states. Algorithm 1 presents a recur-
sive version of main algorithm. The planner explores a graph
where each node represents: the current list of partial ordered
tasks to plan, the current robot and environment state, and
the current plan. The initial node contains the mission (i.e.
tasks list given to robot), a current state describing the initial
environment state (i.e. robot position, energy level, etc.) and
an empty plan. At each step, the planner choose a node
to be explored. This node is expanded into successors by
decomposing a non-primitive task of the current task from
list of tasks to plan into simpler ones (using the specified
task decomposition method), or by validating a primitive
task against the current state (this is done by checking
its preconditions and updating the current state using the
primitive task’s effects) and adding it to the current plan. A
solution is found when reaching a node with an empty task
list. On a node, there can be different ways of decomposing
a task and different orders in which to decompose them.
Backtracking is invoked to consider the different alternatives
until obtaining a solution. Planning problems similar to those
for conference-robot domains are known to be NP-Complete,
so worse case scenarios may involve an exponential blow
up. Nevertheless, by carefully engineering the decomposition
methods to convey some search control strategy, it is possible
to limit this state explosion [5].

Algorithm 1 HTN Task Planner Algorithm
1. GENPLAN(PartiallyOrderedTasksList T , State S, Plan P) : Plan
2. if T is empty return P
3. non-deterministically choose t ∈ T , t with no predecessor
4. if t is not a primitive task
5. non-deterministically choose a decomposition method m
6. return GenPlan(T ∪ decompose(m, t) \t, S, P)
7. else if t is applicable in S
8. return GenPlan(T \t, apply(S, t), concat(P , t))
9. return FAILURE

A. Task Planning with Time Constraints

SHOP2 does not consider time constraints [5]. To sup-
port this, we modified planning algorithm by: (a) adding a
current-time variable into the representation of states during
search; (b) allowing time constraints in the specification of
task decomposition methods and primitive tasks; (c) allowing
the specification of conditional update of effects in primitive
tasks based on this variable. Time constraints may be spec-
ified by two ways. As is the case with similar extensions
of HTN planning with time constraints [6], [7], we could
encode a time constraint inside primitive tasks preconditions
(i.e. current-time ≤ deadline). Another way is setting tasks
constraints attributes (minimum/maximum of start/end time).
During plan generation, theses constraints will be propagated
and validated. To the best of our knowledge, our study
is the first one to examine the applicability of such HTN
extensions in real-world robot experiments. On the other
hand, as explained below, we have additional extensions such
as managing priorities among tasks, which are not possible
in these other HTN extensions.

Beside improving the expressive power for tasks and task
decomposition methods, time constraints also provide an
additional mean for controlling search during the planning
process. Indeed, the planner can use these time constraints
to add partial orders on tasks; these time constraints can be
propagated when a high-level task is decomposed into lower-
level tasks, making it possible to reduce the search space and
hence accelerate the plan generation process.

For instance, suppose that a robot has to present a poster
in a conference between 10:00 and 12:00. Figure 2 illustrates
a very simple decomposition tree of the Show-Poster task.
Leaf nodes in the decomposition tree are primitive tasks (i.e.,
atomic actions) whereas the others are high-level tasks. The
robot has one hour before the beginning of the poster session
to install the poster and should remove the poster in the
next hour after the end. Generic time constraints are added
at each level by specifying minimum/maximum of start/end
time of each task. A partial order A < B is added when
A.maxend < B.minend. Note that the actual specification of
task decompositions does not give trees explicitly, but uses
template decomposition methods as in SHOP2.

When defining temporal intervals in the domain specifi-
cation, care must be taken to establish a good compromise
between safety and efficiency for task execution. Being too
optimistic may cause plan failure because of lack of time.
For instance, assuming that the robot can navigate at high

Show-Poster(10:00, 12:00, Board52){maxend=13:00}

Setup-Poster(10:00, Board52){maxend=10:00} Release-Poster(12:00, Board52){maxend=13:00}

Goto(Board52){maxend=10:00} Install(Board52){minbegin=9:00,maxend=10:00}
Goto(Board52){maxend=10:00} Remove(Board52){minbegin=12:00,maxend=13:00}

Fig. 2. Show-Poster task example.

speed from one location to the other will cause a plan to fail
if unpredictable events slow down the robot. On the other
hand, being too conservative may lead to no solution. In
general, we specify time intervals using an average speed
much lower than the real average speed of the robot.

B. Time Windowing

Each node explored by the search process is associated
with a fixed time stamp (that is, the current-time variable),
so that at the end we obtain a plan consisting of a sequence
of actions each assigned with a time stamp indicating when
it should be executed. Using a technique from SAPA [8],
the returned sequence of actions is post-processed based on
time constraints in the domain specification (i.e., constraints
attached to task decomposition methods and primitive tasks)
to derive time intervals within which actions can be executed
without jeopardizing the correctness of the plan.

Figure 3 illustrates a Gantt chart representation of a
simple plan. Rectangles on each task row represent the
time when the action may be executed. Upper-left sub-
rectangles show the time window (minbegin, minend) in
which tasks are executed as soon as possible. Bottom-
right sub-rectangles represent the worst critical time window
(maxbegin, maxend) which the tasks may be executed at
the latest possible time.

0:00 1:00
Goto(p5)1.
AskMessage(m1)2.

Goto(p7)3.
GiveMessage(m1)4.

Goto(p6)5.
Guard()6.

Fig. 3. Initial plan for delivering a message and guarding.

C. Task Filtering and Priority Handling

In SHOP2, a list of initial tasks is considered as a con-
junctive goal. If the planner fails to find a plan that achieves
them all, it reports failure. In the context of the AAAI Robot
Challenge as well as in many real life situations, we accept
that the robot accomplishes as many tasks as possible, with
some given preferences among tasks, if it is not possible to
achieve them all.

Our extensions add task priority levels, so we can imple-
ment a robot mission as list of prioritized tasks. We handle
them by iteratively running the planner to obtain a plan for
a series of approximations of the mission, with decreasing
level of accuracy. Specifically, initially we call the planner
with the entire mission; if it fails to compute a plan within a
deadline set empirically in the robot architecture (typically 5
seconds), a lowest priority task is removed from the mission
and the planner is called with the remaining mission; and so
on, until a solution plan is found; if the mission becomes
empty before a solution is found, failure is returned (the
entire mission is impossible).

D. On-line Task Planning

To reduce processing delays in the system, our planner is
implemented as a library. The MARIE application adapter [9]
that links the planner to the rest of the computational archi-
tecture loads once the planner library, its domain and world
representation (e.g., operators, preconditions and effects) at
initialization. The planner remains in memory and does not
have to be loaded each time it is invoked. A navigation table
(providing the distances from each pairs of waypoints) also
remains in memory and is dynamically updated during the
mission. External events are accounted for by monitoring the
execution of a plan and validating that each action is executed
with the time intervals set in the plan. External events could
be submitted by others motivational sources through DTW.
For instance, the user interface can submit a new place on
the map, and the navigator can change the estimated arrival
time of the robot to destination.

The robot can receive task requests at any time during a
mission. This requires the robot to update its plan even if
it is not at a specified waypoint in its world representation.
When generating a task plan, the duration of going from
one waypoint to another is instantiated dynamically based on
the current environment. That is the duration of a Goto(X)
action is not taken from the navigation table but is rather
estimated from the actual distance to the targeted waypoint
X, as provided by the navigator motivational source and made
available through the DTW.

IV. EXPERIMENTAL SETUP AND RESULTS

The robotic platform used for our experimentations is
Spartacus, and is equipped with a laser range finder and
one laptop computer (Pentium M 2.0 GHz). High-level
programming is done using RobotFlow (a data-flow pro-
gramming environment) and MARIE (a system integration
framework used to link multiple software packages) [9]. For
instance, MARIE integrates CARMEN, the Carnegie Mellon
navigation toolkit [10], and PMap 1, two separate software
packages for respectively laser-based autonomous navigation
and laser-based mapping in 2D with high-quality occupancy
grid maps. Since we use a separate module as the navigator
(i.e., CARMEN path planner), the task planner only has to
deal with high-level navigation tasks, and do not have to

1http://robotics.usc.edu/˜ahoward/pmap

plan intermediate waypoints between two locations that are
not directly connected.

The experimental scenarios are inspired from the AAAI
Challenge in an office-like environment. We did experiments
on one floor of our building, pictured on the map showed
in Figure 4. The robot was given various missions involving
the following steps: 1) Registering to the conference;
2) Making a presentation; 3) Assisting presentations; 4)
Delivering messages (emulating delivering a package); 5)
Guarding locations at specific time. Domain specifications
for the planner consist of: 1) a world representation
made of the list of waypoints (p#), the navigation table
and the robot’s technical specifications (e.g., average
traveling speed); 2) internal state representation (current-
position, the nearest waypoint; is-inside, a boolean flag
that indicates if the robot is in the range of its nearest
waypoint; is-registered, a boolean flag indicating when
the robot has received his badge; found-places, a list
of waypoints visited by the robot); 3) primitive tasks
(Goto(px); FindP lace(px); Guard(px, time, duration);
GivePresentation(x, time, duration); AskMessage();
GiveMessage(); ListenPresentation(); Register()).

p1p2p3

p4

p5 p6

p7

p8 p9

p10
p11

10 m

Fig. 4. Building floor layout with 11 waypoints.

The capabilities of the task planner in the behavior-based
architecture are illustrated in the following situations: replan-
ning because a time constraint is violated; replanning because
an opportunity is detected; filtering out tasks; and planning
with unknown waypoints. In all tests, used behaviors are
those showed in Figure 1. Tasks priority are defined in this
order (high to low) : guarding a place, making a presentation,
delivering a message and attending to a presentation.

A. Time Constraints Violation

We started the robot at p1 at time t=0:00, and gave the
following mission: deliver a message m1 from p5 to p7;
guard the place p6 at time t=0:22:00. For this mission, the
planner generates an initial plan shown in Figure 3. The small
rectangles for tasks 2 to 6 highlight tight time constraints
for this plan. At the beginning of this trial, we voluntarily
blocked the path of the robot, making it progress slower
than what the planner expected. By analyzing the remaining
distance updated by the navigator, the planner determined
at time t=0:03:50 that the initial plan became invalid and
chose to generate a new one that changed the order of tasks
to satisfy the time assignation for guarding p6.

0:00 1:00
Goto(p5)1.
AskMessage(m1)2.
Goto(p6)3.

Guard()4.
Goto(p7)5.
GiveMessage(m1)6.

Fig. 5. Second plan to deliver a message and guard.

B. Opportunity Detection

The robot was given the following mission: deliver three
messages (m1 from p3 to p10; m2 from p5 to p2; m3 from
p7 to p10) and guard the room p8 for 10 minutes at time
t=0:35:00. Under the assumption that everything goes fine
during execution, this mission can be done by starting with
delivering all messages and then accomplish the guarding
task. However, if something goes wrong, the robot will arrive
too late at p8. In accordance with this, the planner assumed a
conservative average traveling speed (0.12 m/s) for the robot,
and generated the plan shown in Figure 6.

Goto(p3)
AskMessage(m1)

Goto(p5)
AskMessage(m2)

Goto(p7)
AskMessage(m3)

Goto(p2)
GiveMessage(m2)

Goto(p10)
GiveMessage(m1)

Goto(p8)
Guard()

Goto(p9)
GiveMessage(m3)

Fig. 6. Initial plan for delivering three messages and guarding.

The robot then started execution of the plan by going to p3.
At step #2, the robot acquired m1. In the domain model, we
set that such action may take up to 90 sec. It turned out that
the traveling time to p3 was shorter than expected, and m1
was acquired after only 20 sec, resulting in approximately 2
minutes advance with the plan. When starting step #3 at time
t=0:05:10 the planner determined that the action Goto(p5)
could start faster than expected, and decided to reinvoke the
planner. A new plan was generated, with task Guard(p8)
now placed at the end because it was possible to deliver all
messages before the time for guarding p8.

C. Task Cancellation by Task Filtering

The robot was initially given the following mission: attend
a presentation at p4 at time t=0:10:00 for 10 min and deliver
a message from p2 to p9. The planner generated the plan
shown in Figure 7. At time t=0:02:08, the robot arrived
at p2 and received the new task of guarding location p10

0:00 1:00
Goto(p2)1.
AskMessage(m1)2.
Goto(p4)3.

ListenPresentation()4.
Goto(p9)5.

GiveMessage(m1)6.
Fig. 7. Initial plan to attend a presentation at p4 and deliver a message.

at time t=0:12:00. A new plan was therefore required. As
described earlier, before generating a complete plan, our
planner begins by validating the robot’s mission. For the six
task pairs, the planner verified if it is possible to generate a
valid plan. For the task pair {AttendPresentation(p4, 0:10:00,
0:10:00), GuardPlace(p10, 0:12:00, 0:05:00)}, no possible
plan is found. Intuitively, this is explained by the fact that
it takes about 9 minutes for the robot to travel the distance
separating p4 and p10. Since these two tasks are mutually
exclusive, the planner generated a new plan after removing
the lowest priority task, which was to attend the presentation
at p4 (task priorities are part of the mission specification
given by the user).

D. Planning with an Unknown Waypoint

Combining planning with other motivational modules can
be very beneficial. We gave the robot the mission to guard
p1 and to deliver a message from c1 to p7. Since c1 location
is unknown on the map, the planner cannot make a good
estimation on how to reach it. Here, the planner assumes the
worst-case scenario, i.e., that c1 is very far. This resulted
in going first to p6 for guarding. While going to p6 as
recommended by the planner, an instinctual motivation is
recommending another task of finding location c1. To find
this place, the robot popup a message on his screen and
asking assistance to text-to-speech software. At same time,
the planner and instinctual motivation execute two different
tasks in order to achieve the mission. When requested
information is provided by a human (i.e., that c1 is between
p2 and p7), the task of finding c1 is completed. By receiving
this event, the planner is reinvoked. Because AskMessage()
and GiveMessage() are now feasible before Guard(), the
planner chooses this order.

Unless one uses multiple processes for task recommenda-
tion and at the same time avoids keeping the planner as cen-
tralized and unique source of motivation, it becomes difficult
to produce this kind of behavior. Doing it with a traditional
hybrid architecture would require a more elaborated model at
the planning level in order to generate a plan that first try to
find c1 during the time available. Our architecture simplifies
the complexity of the planning model by delegating this kind
of processing to simpler modules, making the system more
scalable.

E. Performance Summary at AAAI Robot Challenge 2006

For the AAAI Robot Challenge, we prepared a 30 minute
demonstration making the robot achieve six tasks in different

locations: deliver a message, demonstrate audio capabilities,
find a power outlet, recharge the batteries, show a presen-
tation and request an human to fill out a survey about the
demo. In a typical trial, the planner is invoked 25 times.
Number of planned tasks varies from 1 to 6, with an average
of 3.6 tasks per call. The minimum, average and maximum
time planning required to generate plans were respectively
of 0.47, 3.49 and 0.94 milliseconds. Fast processing time
for the planner is observed because of the small number of
tasks, but real-time planning is an important requirement for
handling dynamic conditions. Our planner generally outputs
plans under 1 second for missions of up to 10 tasks.

V. RELATED WORK

Over the past decade there has been various robot architec-
tures that integrate reactive behaviors and deliberate planning
with quite remarkable success, including [11], [12], [13].
One emphasis in [13] was on defining a Task Description
Language (TDL) amenable to an automated planning pro-
cess. In [12], the focus is on integrating production rule-
based robot reaction rules (specified using the Procedural
Reasoning System) with an automated planner. Similarly,
ROGUE system integrates a behavior-based robot architec-
ture with PRODIGY planner. Other approaches include [14],
[11], [15] and some of them address the issue of monitoring
and handling metric time constraints. One contribution of this
paper to this inquiry is the design of a behavioral architecture
in which the planner is considered as a behavior producer
on the same footing as others. As explained above, for some
missions such a feature is crucial.

Another contribution is the extension of HTN planning
to make it better suited for planning in domains such as
the AAAI Robot Challenge. The extensions deal with task
priority, time constraints, time windowing and task filtering.
As we mentioned before, there exist similar extensions of
HTN planning to deal with time constraints [6], [7], but
ours is unique in handling tasks with priorities, beside being
the first demonstration of the actual usefulness of such
extensions on complex real-world robot experiments. There
exist other integrations of planning with time constraints into
robot architectures [16], but without the hierarchical task
decomposition option, neither the decentralized behaviour-
based approach.

VI. CONCLUSION AND FUTURE WORK

This paper studies the use of an HTN-based planner in a
behavior-based architecture following a distributed approach
to issue tasks. It outlines in details the special features added
to the HTN-based planner to deal with specific constraints
of having an autonomous robots operate in real life settings,
and is combined with an external path planning algorithm
handling navigation tasks. These features mainly deal with
plan generation, monitoring and execution in dynamic con-
ditions, features that, when taken collectively, provides an
original solution to mobile robot planning capabilities. Re-
sults confirm the feasibility of our approach.

During our trials, we noted that an important source
of uncertainty concerns actions duration. When the robot
navigates in a crowd or a corridor with a lot of people,
it gets significantly slowed down. The average speed of
Goto(X) actions varies from under 0.1 to more than 0.2
m/s. This sometimes caused plan failure because the robot
arrived too late to meet mandatory time constraints. Also,
duration of human-robot interaction tasks are highly random.
Many recent works [17], [18] in AI planning try to address
uncertainty about time and resources. We believe that such
feature will be very benefit to robotics application like for
ones that include human and robot interaction tasks that have
unpredictable duration. In future work, we plan to integrate
this capability in our HTN-planner.

REFERENCES

[1] R. C. Arkin, Behavior-Based Robotics. The MIT Press, 1998.
[2] S. J. Rosenschein and L. P. Kaelbling, “A situated view of representa-

tion and control,” Artificial Intelligence, vol. 73, pp. 149–173, 1995.
[3] R. A. Brooks, “Elephants don’t play chess,” in Designing Autonomous

Agents: Theory and Practive form Biology to Engineering and Back.
The MIT Press, Bradford Book, 1990, pp. 3–15.

[4] M. Werner, Humanism and beyond the truth. Humanism Today, 1999,
vol. 13, http://www.humanismtoday.org/vol13/werner.html.

[5] D. Nau, T. Au, O. Ilghami, U. Kuter, J. Murdock, D. Wu, and
F. Yaman, “SHOP2: An HTN planning system,” Journal of Artificial
Intelligence Research, vol. 20, pp. 379–404, 2003.

[6] F. Yaman and D. S. Nau, “Timeline: An htn planner that can reason
about time,” in AIPS Workshop on Planning for Temporal Domains,
2002, pp. 75–81.

[7] R. P. Goldman, “Durative planning in HTNs,” in International Con-
ference on Automated Planning and Scheduling (ICAPS), 2006, pp.
382–385.

[8] M. Do and S. Kambhampati, “SAPA: A scalable multi-objective metric
temporal planner,” Journal of Artificial Intelligence Research, vol. 20,
pp. 155–194, 2003.

[9] C. Cote, D. Letourneau, F. Michaud, J.-M. Valin, Y. Brosseau,
C. Raievsky, M. Lemay, and V. Tran, “Code reusability tools for
programming mobile robots,” in Proceedings of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, 2004.

[10] M. Montemerlo, N. Roy, and S. Thrun, “Perspectives on standardiza-
tion in mobile robot programming: The Carnegie Mellon navigation
(CARMEN) toolkit,” in Proceedings IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 2003, pp. 2436–2441.

[11] S. Lemai and F. Ingrand, “Interleaving temporeal planning and exe-
cution in robotics domains,” in Proceeedings National Conference on
Artificial Intelligence (AAAI), 2004.

[12] I. F, F and O. Despouys, “Extending procedural reasoning toward robot
actions planning,” in IEEE International Conference on Robotics and
Automation (ICRA), 2001, pp. 9–14.

[13] R. Simmons and D. Apfelbaum, “A task description language for
robot control,” in Proceedings Conference on Intelligent Robotics and
Systems, 1998.

[14] S. Chien, R. Knight, A. Stechert, R. Sherwood, and G. Rabideau,
“Using iterative repair to improve the responsiveness of planning
and scheduling,” in Proceedings Fifth International Conference on
Artificial Intelligence Planning and Scheduling, 2000.

[15] J. Ambros-Ingerson and S. Steel, “Integrating planning, execution
and monitoring,” in Proceedings National Conference on Artificial
Intelligence, 1998.

[16] Y. Abdedaim, E. Asarin, M. Gallien, F. Ingrand, C. Lesire, and
M. Sighireanu, “Planning robust temporal plans: a comparison be-
tween CBTP and TGA approaches,” in International Conference on
Automated Planning and Scheduling (ICAPS), 2007.

[17] Mausam and D. S. Weld, “Probabilistic temporal planning with
uncertain durations,” in National Conference on Artificial Intelligence
(AAAI), 2006.

[18] H. L. S. Younes and R. G. Simmons, “Policy generation for
continuous-time stochastic domains with concurrency,” in Interna-
tional Conference on Automated Planning and Scheduling (ICAPS),
2004, pp. 325–334.

