
PLANIFICATION D’ACTIONS CONCURRENTES SOUS

CONTRAINTES ET INCERTITUDE

par

Éric Beaudry

Thèse présentée au Département d’informatique
en vue de l’obtention du grade de philosophiæ doctor (Ph.D.)

FACULTÉ DES SCIENCES

UNIVERSITÉ DE SHERBROOKE

Sherbrooke, Québec, Canada, 23 mars 2011

Sommaire

Cette thèse présente des contributions dans le domaine de la planification en in-
telligence artificielle, et ce, plus particulièrement pour une classe de problèmes qui
combinent des actions concurrentes (simultanées) et de l’incertitude. Deux formes
d’incertitude sont prises en charge, soit sur la durée des actions et sur leurs effets.
Cette classe de problèmes est motivée par plusieurs applications réelles dont la robo-
tique mobile, les jeux et les systèmes d’aide à la décision. Cette classe a notamment
été identifiée par la NASA pour la planification des activités des rovers déployés sur
Mars.

Les algorithmes de planification présentés dans cette thèse exploitent une nou-
velle représentation compacte d’états afin de réduire significativement l’espace de
recherche. Des variables aléatoires continues sont utilisées pour modéliser l’incerti-
tude sur le temps. Un réseau bayésien, qui est généré dynamiquement, modélise les
dépendances entre les variables aléatoires et estime la qualité et la probabilité de
succès des plans. Un premier planificateur, ActuPlannc basé sur un algorithme de
recherche à chaînage avant, prend en charge des actions ayant des durées probabilistes.
Ce dernier génère des plans non conditionnels qui satisfont à une contrainte sur la
probabilité de succès souhaitée. Un deuxième planificateur, ActuPlan, fusionne des
plans non conditionnels afin de construire des plans conditionnels plus efficaces. Un
troisième planificateur, nommé QuanPlan, prend également en charge l’incertitude
sur les effets des actions. Afin de modéliser l’exécution simultanée d’actions aux effets
indéterminés, QuanPlan s’inspire de la mécanique quantique où des états quan-
tiques sont des superpositions d’états classiques. Un processus décisionnel de Markov
(MDP) est utilisé pour générer des plans dans un espace d’états quantiques. L’opti-
malité, la complétude, ainsi que les limites de ces planificateurs sont discutées. Des

i

Sommaire

comparaisons avec d’autres planificateurs ciblant des classes de problèmes similaires
démontrent l’efficacité des méthodes présentées. Enfin, des contributions complémen-
taires aux domaines des jeux et de la planification de trajectoires sont également
présentées.

Mots-clés: Intelligence artificielle ; planification ; actions concurrentes ; incertitude.

ii

Préface

Les travaux présentés dans cette thèse n’auraient pas été possibles sans de nom-
breux appuis. Je veux tout d’abord remercier Froduald Kabanza et François Michaud
qui ont accepté de diriger mes travaux de recherche. Leur grande disponibilité et leur
enthousiasme témoignent de leur confiance en la réussite de mes travaux et ont été
une importante source de motivation.

Je tiens aussi à souligner la contribution de plusieurs amis et collègues du labo-
ratoire Planiart au Département d’informatique de la Faculté des sciences. En plus
d’être des co-auteurs de plusieurs articles, Francis Bisson et Simon Chamberland
m’ont grandement aidé dans la révision de plusieurs de mes articles. Je tiens égale-
ment à remercier Jean-François Landry, Khaled Belgith, Khalid Djado et Mathieu
Beaudoin pour leurs conseils, leur soutien, ainsi que pour les bons moments passés
en leur compagnie. Je remercie mes amis et collègues du laboratoire IntRoLab à la
Faculté de génie, dont Lionel Clavien, François Ferland et Dominic Létourneau avec
qui j’ai collaboré sur divers projets au cours des dernières années.

Je tiens également à remercier mes parents, Gilles et Francine, ainsi que mes
deux frères, Pascal et Alexandre, qui m’ont toujours encouragé dans les projets que
j’ai entrepris. Je remercie mon amie de cœur, Kim Champagne, qui m’a grandement
encouragé au cours de la dernière année. Je souligne aussi l’appui moral de mes amis
proches qui se sont intéressés à mes travaux.

Cette thèse a été possible grâce au soutien financier du Conseil de la recherche
en sciences naturelles et génie du Canada (CRSNG) et du Fonds québécois de la
recherche sur la nature et les technologies (FQRNT).

Les parties en français privilégient l’usage de la graphie rectifiée (recommandations
de 1990) à l’exception de certains termes ayant une graphie similaire en anglais.

iii

Abréviations

AI Artificial Intelligence

AAAI Association for the Advance of Artificial Intelligence

BN Réseaux bayésien (Bayesian Netowrk)

CoMDP Processus décisionnel markovien concurrent (Concurrent Markov Decision
Process)

CPTP Concurrent Probabilistic Temporal Planning

FPG Factored Policy Gradient [Planner]

GTD Generate, Test and Debug

IA Intelligence artificielle

ICR Centre instantanné de rotation (Instantaneous Center of Rotation)

ICAPS International Conference on Automated Planning and Scheduling

LRTDP Labeled Real-Time Dynamic Programming

MDP Processus décisionnel markovien (Markov Decision Process)

NASA National Aeronautics and Space Administration des États-Unis d’Amérique

PDDL Planning Domain Definition Language

PDF Fonction de densité de probabilité (Probability Density Function)

RTDP Real-Time Dynamic Programming

iv

Table des matières

Sommaire i

Préface iii

Abréviations iv

Table des matières v

Liste des figures ix

Liste des tableaux xi

Introduction 1

1 Planification d’actions concurrentes avec des contraintes et de l’in-
certitude sur le temps et les ressources 8
1.1 Introduction . 11
1.2 Basic Concepts . 14

1.2.1 State Variables . 14
1.2.2 Time and Numerical Random Variables 15
1.2.3 States . 15
1.2.4 Actions . 16
1.2.5 Dependencies on Action Duration Random Variables 19
1.2.6 State Transition . 20
1.2.7 Goals . 22
1.2.8 Plans . 23

v

Table des matières

1.2.9 Metrics . 24
1.3 ActuPlannc : Nonconditional Planner 25

1.3.1 Example on Transport domain 26
1.3.2 Bayesian Network Inference Algorithm 28
1.3.3 Minimum Final Cost Heuristic 32
1.3.4 State Kernel Pruning Strategy 34
1.3.5 Completeness and Optimality 35
1.3.6 Finding Equivalent Random Variables 37

1.4 ActuPlan : Conditional Plannner 40
1.4.1 Intuitive Example . 40
1.4.2 Revised Nonconditional Planner 43
1.4.3 Time Conditional Planner . 47

1.5 Experimental Results . 54
1.5.1 Concurrent MDP-based Planner 54
1.5.2 Evaluation of ActuPlannc 55
1.5.3 Evaluation of ActuPlan . 57

1.6 Related Works . 59
1.7 Conclusion and Future Work . 61

2 QuanPlan : un planificateur dans un espace d’états quantiques 63
2.1 Introduction . 66
2.2 Basic Concepts . 69

2.2.1 State Variables . 70
2.2.2 Time Uncertainty . 70
2.2.3 Determined States . 71
2.2.4 Actions . 72
2.2.5 Actions in the Mars Rovers Domain 73
2.2.6 State Transition . 75
2.2.7 Quantum States . 76
2.2.8 Observation of State Variables 78
2.2.9 Goal . 80

2.3 Policy Generation in the Quantum State Space 81

vi

Table des matières

2.3.1 Example of Partial Search in the Quantum State Space 82
2.3.2 Advanced Policy Generation 83
2.3.3 Optimality . 84

2.4 Empirical Results . 85
2.5 Conclusion . 86

3 Application des processus décisionnels markoviens afin d’agrémenter
l’adversaire dans un jeu de plateau 87
3.1 Introduction . 90
3.2 Background . 92

3.2.1 Minimizing Costs . 92
3.2.2 Maximizing Rewards . 93
3.2.3 Algorithms for Solving MDPs 95

3.3 Optimal Policy for Winning the Game 96
3.3.1 The Modified Snakes and Ladders Game with Decisions 96
3.3.2 Single Player . 97
3.3.3 Two Players . 99
3.3.4 Generalization to Multiplayer 104

3.4 Optimal Policy for Gaming Experience 105
3.4.1 Simple Opponent Abandonment Model 106
3.4.2 Distance-Based Gaming Experience Model 108

3.5 Conclusion . 108

4 Planification des déplacements d’un robot omnidirectionnel et non
holonome 110
4.1 Introduction . 115
4.2 Velocity State of AZIMUT . 117
4.3 Planning State Space . 119
4.4 Motion Planning Algorithm . 120

4.4.1 Goal and Metric . 122
4.4.2 Selecting a Node to Expand 122
4.4.3 Selecting an Action . 124

4.5 Results . 126

vii

Table des matières

4.6 Conclusion . 129

Conclusion 130

viii

Liste des figures

1.1 Example of a state for the Transport domain 17
1.2 Example of two state transitions in the Transport domain 21
1.3 Example of a Bayesian network expanded after two state transitions . 22
1.4 An initial state in the Transport domain 24
1.5 Sample search with the Transport domain 27
1.6 Extracted nonconditional plan . 27
1.7 Random variables with samples . 30
1.8 Estimated cumulative distribution functions (CDF) of random variables 31
1.9 Sample Bayesian network with equations in original and canonical forms 38
1.10 Bayesian network with arrays of samples attached to random variables 39
1.11 Example with two goals . 41
1.12 Possible nonconditional plans . 42
1.13 Possible actions in state s2 . 42
1.14 Latest times for starting actions . 43
1.15 Example of time conditioning . 53
1.16 Example of conditional plan . 53
1.17 Impact of number of samples . 57
1.18 Impact of cache size . 58
1.19 Classification of planning problems with actions concurrency and un-

certainty . 59

2.1 Example of a map to explore . 69
2.2 Example of a Bayesian network to model time uncertainty 70
2.3 Example of determined states . 72

ix

Liste des figures

2.4 Example of quantum states . 78
2.5 Example of an observation of a state variable 80
2.6 Example of expanded quantum state space 82
2.7 Example of expanded Bayesian network 82
2.8 Values of actions in a state q . 84

3.1 Occupancy grid in a robot motion planning domain 94
3.2 Simple board for the Snakes and Ladders game 97
3.3 Performance improvement of an optimized policy generator 100
3.4 Simple board with an optimal single-player policy 100
3.5 Optimal policy to beat an opponent playing with an optimal policy to

reach the end of the board as quickly as possible 103
3.6 Required time to generate single- and two-players policies 105
3.7 Quality of plans as a function of the allotted planning time 107

4.1 The AZIMUT-3 platform in its wheeled configuration 116
4.2 ICR transition through a steering limitation 118
4.3 Different control zones (modes) induced by the steering constraints . 119
4.4 State parameters . 120
4.5 Environments and time allocated for each query 127
4.6 Comparison of trajectories created by a random, a naïve, and a biased

algorithms . 128

x

Liste des tableaux

1.1 Actions specification of the Transport domain 18
1.2 Empirical results for Transport and Rovers domains 56
1.3 Empirical results for the ActuPlan on the Transport domain 58

2.1 Actions specification for the Rovers domain 74
2.2 Empirical results on the Rovers domains 85

3.1 Empirical results for the value iteration algorithm on the board from
Figure 3.2 . 99

3.2 Percentage of wins between single- and two-players policies 104
3.3 Improvement when considering the abandonment model 107

4.1 Parameters used . 127
4.2 Comparison of a naïve algorithm and our proposed solution 128

xi

Introduction

La prise de décision automatique représente une capacité fondamentale en intel-
ligence artificielle (IA). Cette capacité est indispensable dans de nombreux systèmes
intelligents devant agir de façon autonome, c’est-à-dire sans interventions externes,
qu’elles soient humaines ou d’autres natures. Par exemple, un robot mobile doit
prendre une multitude de décisions afin d’accomplir sa mission. Ses décisions peuvent
se situer à plusieurs niveaux, comme de sélectionner sa prochaine tâche, de choisir sa
prochaine destination, de trouver un chemin sécuritaire, et d’activer ses actionneurs et
ses capteurs. De façon similaire, les personnages animés dans les jeux vidéos doivent
également adopter automatiquement des comportements qui contribuent à augmen-
ter le réalisme du jeu, et ce, dans l’ultime but d’agrémenter l’expérience de jeu des
joueurs humains. D’autres applications, comme des systèmes d’aide à la prise de déci-
sions, doivent proposer des actions et parfois même les justifier à l’aide d’explications
concises.

Fondamentalement, une décision implique le choix d’une action à prendre. Tout
comme les humains qui sont responsables de leurs choix, donc de leurs agissements, un
agent intelligent est lui aussi responsable de ses décisions, donc de ses actions. Cette
lourde responsabilité implique le besoin d’évaluer et de raisonner sur les conséquences
de ses actions. Ce raisonnement est indispensable puisque les conséquences d’une
action peuvent avoir des implications considérables sur d’autres actions futures. Cela
est d’autant plus important lorsque des actions ont des conséquences subtiles qui
peuvent retirer des possibilités à l’agent de façon irréversible, ou impliquer des couts
significatifs. Le problème décisionnel devient nettement plus complexe lorsque les
conséquences des actions sont incertaines.

Selon la complexité de la mission à accomplir, un agent intelligent peut disposer de

1

Introduction

plusieurs options, c’est-à-dire différentes façons d’agencer ses actions au fil du temps.
Dans ce contexte précis, une option est fondamentalement un plan d’actions. De façon
générale, l’existence de plusieurs options implique la capacité de les simuler à l’avance
afin de retenir la meilleure option possible. Ainsi, le problème de prise de décisions
automatique peut être vu comme un problème de planification où le meilleur plan
d’actions est recherché. En d’autres mots, un agent intelligent doit soigneusement
planifier ses actions afin d’agir de façon rationnelle.

Puisque la planification nécessite de connaitre les conséquences des actions plani-
fiées, un agent intelligent doit disposer d’un modèle de lui-même et de l’environnement
dans lequel il évolue. Le monde réel étant d’une immense complexité, un modèle fi-
dèle à la réalité est généralement hors de portée en raison des ressources limitées
en capacité de calcul et en mémoire. Ainsi, des simplifications dans la modélisation
sont incontournables. Ces simplifications se font à l’aide de différentes hypothèses de
travail qui réduisent la complexité des problèmes de planification. Cela permet de
trouver des plans dans des délais raisonnables, donc de prendre plus rapidement des
décisions. En contrepartie, les hypothèses simplificatrices adoptées peuvent affecter, à
la baisse, la qualité des décisions prises. Sans s’y limiter, les hypothèses couramment
utilisées [51] sont :

– Observabilité totale. À tout instant, tout ce qui est requis d’être connu sur le
monde (l’environnement) 1 est connu. Par exemple, dans un domaine robotique,
la position du robot pourrait être réputée comme étant parfaitement connue à
tout instant.

– Déterministe. Le résultat d’une action est unique et constant. En d’autres mots,
il est présumé que l’exécution se déroule dans un monde parfait où les actions
ne peuvent pas échouer et que leurs effets sont totalement prédéterminés.

– Monde statique. Il n’y a pas d’évènements externes qui modifient le monde.
– Plans séquentiels. Les plans sont des séquences d’actions où chaque action s’exé-
cute l’une à la suite de l’autre. Il n’y a pas d’actions concurrentes (simultanées).

– Durée implicite. Les actions n’ont pas de durée, elles sont considérées comme

1. Dans cette thèse, les mots monde et environnement sont des quasi-synonymes. Dans la lit-
térature, le mot monde (world en anglais) est généralement employé en planification en IA pour
désigner une simplification (un modèle) de ce qui est appelé environnement en IA et en robotique
mobile.

2

Introduction

étant instantanées ou de durée unitaire au moment de la planification.
En combinant les hypothèses précédentes, plusieurs classes de problèmes (et d’al-

gorithmes) de planification sont créées : classique, déterministe, non déterministe,
probabiliste, etc. Les frontières entre ces classes ne sont pas toujours nettes et cer-
taines se chevauchent. Chaque classe admet un ensemble de domaines de planification.

Essentiellement, les travaux de recherche en planification en IA consistent à conce-
voir une solution, soit une combinaison d’algorithmes de planification, d’heuristiques
et diverses stratégies, pour résoudre des problèmes d’une classe donnée. Cette solu-
tion est intimement liée à un ensemble très précis d’hypothèses simplificatrices qui
sont soigneusement présélectionnées en fonction des applications ciblées. Le but est
de trouver un juste compromis entre la qualité des décisions prises et les ressources
nécessaires en temps de calcul et en mémoire. Ce défi est d’autant plus ambitieux
considérant qu’une solution générale est hautement souhaitable. En d’autres mots,
on désire une solution de planification qui est la plus indépendante possible de l’ap-
plication ciblée afin qu’elle soit facilement adaptable à de nouvelles applications.

Au cours des dernières années, des progrès considérables ont été réalisés dans le
domaine de la planification en IA. Pour certains types de problèmes de planification,
des planificateurs sont capables de générer efficacement des plans comprenant des
centaines ou même des milliers d’actions. Par contre, ces planificateurs sont souvent
basés sur des hypothèses peu réalistes ou tout simplement trop contraignantes pour
être utilisés dans des applications réelles.

Cette thèse présente des avancées pour une classe de problèmes de planification
spécifique, soit celle qui combine des actions concurrentes (simultanées) et de l’incer-
titude. L’incertitude peut se manifester par différentes formes, comme sur la durée
des actions, la consommation et la production de ressources (ex. : énergie), et sur les
effets des actions tels que leur réussite ou échec. Par son immense complexité, cette
classe présente un important défi [17]. Ce type de problèmes est motivé par plusieurs
applications concrètes.

Un premier exemple d’application est la planification de tâches pour des robots
évoluant dans des environnements où des humains sont présents. Ces robots doivent
être capables d’effectuer des actions simultanées, comme de se déplacer tout en ef-
fectuant d’autres tâches. Ils font face à différentes incertitudes qui sont liées à la

3

Introduction

dynamique de l’environnement et à la présence d’humains. Par exemple, suite aux
participations aux AAAI Robot Challenge de 2005 et 2006 [49], une difficulté obser-
vée fut la navigation dans des foules. Les capteurs étant obstrués, le robot avait de la
difficulté à se localiser. En plus d’avoir à contourner des personnes, qui représentent
des obstacles mobiles, la difficulté à se localiser a rendu la vitesse de déplacement
très imprévisible. Les interactions humain-robot ont également causé des difficultés
puisqu’elles ont aussi des durées incertaines. À cette époque, le robot utilisait un pla-
nificateur déterministe [8] intégré dans une architecture de planification réactive [7].
Un paramètre important du modèle du planificateur était la vitesse du robot. Une
valeur trop optimiste (grande) pouvait entrainer des échecs au niveau du non-respect
des contraintes temporelles, alors qu’une valeur trop prudente (petite) pouvait pou-
vait occasionner le manque d’opportunités. Un planificateur considérant l’incertitude
sur la durée des actions pourrait améliorer la performance d’un tel robot.

Un deuxième exemple d’application associée à cette classe est la planification des
activités des robots (rovers) déployés sur Mars [17]. Les robots Spirit et Opportunity
déployés par la NASA doivent effectuer des déplacements, préchauffer et initialiser
leurs instruments de mesure, et acquérir des données et des images en plus et les
transmettre vers la Terre. Pour augmenter leur efficacité, ces robots peuvent exé-
cuter plusieurs actions simultanément. Ces robots sont sujets à différentes sources
d’incertitudes. Par exemple, la durée et l’énergie requises pour les déplacements sont
incertaines. Les données acquises par les capteurs ont également une taille incertaine,
ce qui a des impacts sur la durée des téléchargements. Actuellement, les tâches de ces
robots sont soigneusement planifiées à l’aide de systèmes de planification à initiatives
mixtes [1] où un programme guide un utilisateur humain dans la confection des plans.
Des planificateurs plus sophistiqués pourraient accroitre le rendement de ces robots.

Les jeux vidéos représentent un troisième exemple d’application pouvant contenir
des actions concurrentes et de l’incertitude. L’IA dans les jeux peut avoir à com-
mander simultanément un groupe d’agents devant se comporter de façon coordonnée.
L’incertitude peut également se manifester de différentes façons dans les jeux. Par
exemple, le hasard est omniprésent dans les jeux de cartes et dans les jeux de plateau
impliquant des lancers de dés. Les jeux de stratégies peuvent également contenir des
actions ayant des effets stochastiques. Cela s’ajoute à une autre dimension importante

4

Introduction

des jeux, soit la présence d’un ou plusieurs adversaires. Il ne s’agit plus uniquement
d’évaluer la conséquence de ses propres actions, mais également d’être en mesure de
contrer les actions de l’adversaire.

Les systèmes d’aide à la décision sont d’autres applications pouvant contenir des
actions simultanées avec des effets probabilistes. CORALS [13, 14] est un exemple de
système d’aide à la décision, développé pour la division Recherche et développement
pour la défense Canada, qui supportera les opérateurs de navires déployés dans des
régions dangereuses dans le cadre de missions humanitaires ou de maintien de la paix 2.
Les attaques ennemies pouvant être rapides et coordonnées, les opérateurs doivent
réagir rapidement en utilisant plusieurs ressources de combats simultanément. Les
actions sont également sujettes à différentes formes d’incertitude, la principale étant
le taux de succès des armes qui dépend de plusieurs facteurs.

Les contributions présentées dans cette thèse visent à améliorer la qualité et la
rapidité de la prise de décisions pour des applications combinant des actions concur-
rentes sous incertitude. La thèse est composée de quatre chapitres, chacun présentant
des contributions spécifiques.

Le chapitre 1 présente le planificateur ActuPlan qui permet de résoudre des
problèmes de planification avec des actions concurrentes, et de l’incertitude et des
contraintes sur le temps et les ressources. Une représentation d’états basée sur un
modèle continu du temps et des ressources est présentée. Contrairement aux ap-
proches existantes, cela permet d’éviter une explosion de l’espace d’états. L’incerti-
tude sur le temps et les ressources est modélisée à l’aide de variables aléatoires conti-
nues. Un réseau bayésien construit dynamiquement 3 permet de modéliser la relation
entre les différentes variables. Des requêtes d’inférences dans ce dernier permettent
d’estimer la probabilité de succès et la qualité des plans générés. Un premier pla-
nificateur, ActuPlannc, utilise un algorithme de recherche à chainage avant pour
générer efficacement des plans non conditionnels qui sont quasi optimaux. Des plans
non conditionnels sont des plans qui ne contiennent pas de branchements condition-
nels qui modifient le déroulement de l’exécution selon la durée effective des actions.

2. L’auteur de la thèse a participé au développement des algorithmes de planification du système
CORALS, mais à l’extérieur du doctorat.

3. À ne pas confondre avec un réseau bayésien dynamique.

5

Introduction

ActuPlannc est ensuite adapté pour générer plusieurs plans qui sont fusionnés en un
plan conditionnel potentiellement meilleur. Les plans conditionnels sont construits en
introduisant des branchements conditionnels qui modifie le déroulement de l’exécution
des plans selon des observations à l’exécution. La principale observation considérée est
la durée effective des actions exécutées. Par exemple, lorsque des actions s’exécutent
plus rapidement que prévu, il devient possible de saisir des opportunités en modifiant
les façon de réaliser le reste du plan.

Le chapitre 2 présente le planificateur QuanPlan. Il s’agit d’une généralisation
à plusieurs formes d’incertitude. En plus de gérer l’incertitude sur le temps et les
ressources, les effets incertains des actions sont également considérés. Une solution
hybride, qui combine deux formalismes bien établis en IA, est proposée. Un réseau
bayésien est encore utilisé pour prendre en charge l’incertitude sur la durée des actions
tandis qu’un processus décisionnel markovien (MDP) s’occupe de l’incertitude sur les
effets des actions. Afin de résoudre le défi de la concurrence d’actions sous incertitude,
l’approche s’inspire des principes de la physique quantique. En effet, QuanPlan
effectue une recherche dans un espace d’états quantiques qui permet de modéliser des
superpositions indéterminées d’états.

Le chapitre 3 explore une application différente où la concurrence d’actions se
manifeste dans une situation d’adversité. L’IA devient un élément de plus en plus
incontournable dans les jeux. Le but étant d’agrémenter le joueur humain, des idées
sont proposées pour influencer la prise de décisions en ce sens. Au lieu d’optimiser les
décisions pour gagner, des stratégies sont présentées pour maximiser l’expérience de
jeu de l’adversaire.

Le chapitre 4 porte sur la planification de mouvements pour le robot AZIMUT-3. Il
s’agit d’une contribution complémentaire aux trois premiers chapitres qui portent sur
la planification d’actions concurrentes sous incertitude. En fait, dans les architectures
robotiques, la planification des actions et des déplacements se fait généralement à
l’aide de deux planificateurs distincts. Cependant, ces planificateurs collaborent : le
premier décide de l’endroit où aller, alors que le second décide du chemin ou de la
trajectoire à emprunter. Comme indiqué plus haut, pour planifier, le planificateur
d’actions a besoin de simuler les conséquences des actions. Le robot AZIMUT-3,
étant omnidirectionnel, peut se déplacer efficacement dans toutes les directions. Cela

6

Introduction

présente un avantage considérable. Or, pour générer un plan d’actions, le premier
planificateur a besoin d’estimer la durée des déplacements. Une façon d’estimer ces
déplacements est de planifier des trajectoires.

La thèse se termine par une conclusion qui rappelle les objectifs et les principales
contributions présentés. Des travaux futurs sont également proposés pour améliorer
l’applicabilité des algorithmes de planification présentés. Ces limites sont inhérentes
aux hypothèses simplificatrices requises par ces algorithmes.

7

Chapitre 1

Planification d’actions
concurrentes avec des contraintes
et de l’incertitude sur le temps et
les ressources

Résumé
Les problèmes de planification combinant des actions concurrentes (simul-

tanées) en plus de contraintes et d’incertitude sur le temps et les ressources re-
présentent une classe de problèmes très difficiles en intelligence artificielle. Les
méthodes existantes qui sont basées sur les processus décisionnels markoviens
(MDP) doivent utiliser un modèle discret pour la représentation du temps et
des ressources. Cette discrétisation est problématique puisqu’elle provoque une
explosion exponentielle de l’espace d’états ainsi qu’un grand nombre de transi-
tions. Ce chapitre présente ActuPlan, un planificateur basé sur une nouvelle
approche de planification qui utilise un modèle continu plutôt que discret afin
d’éviter l’explosion de l’espace d’états causée par la discrétisation. L’incerti-
tude sur le temps et les ressources est représentée à l’aide de variables aléatoires
continues qui sont organisées dans un réseau bayésien construit dynamique-

8

ment. Une représentation d’états augmentés associe ces variables aléatoires
aux variables d’état. Deux versions du planificateur ActuPlan sont présen-
tées. La première, nommée ActuPlannc, génère des plans non conditionnels
à l’aide d’un algorithme de recherche à chainage avant dans un espace d’états
augmentés. Les plans non conditionnels générés sont optimaux à une erreur
près. Les plans générés satisfont à un ensemble de contraintes dures telles que
des contraintes temporelles sur les buts et un seuil fixé sur la probabilité de
succès des plans. Le planificateur ActuPlannc est ensuite adapté afin de géné-
rer un ensemble de plans non conditionnels qui sont caractérisés par différents
compromis entre leur cout et leur probabilité de succès. Ces plans non condi-
tionnels sont fusionnés par le planificateur ActuPlan afin de construire un
meilleur plan conditionnel qui retarde des décisions au moment de l’exécution.
Les branchements conditionnels de ces temps sont réalisés en conditionnant le
temps. Des résultats empiriques sur des bancs d’essai classiques démontrent
l’efficacité de l’approche.

Commentaires
L’article présenté dans ce chapitre sera soumis au Journal of Artificial In-

telligence Research (JAIR). Il représente la principale contribution de cette
thèse. Cet article approfondit deux articles précédemment publiés et présentés
à la vingtième International Conference on Automated Planning and Schedu-
ling (ICAPS-2010) [9] et à la dix-neuvième European Conference on Artificial
Intelligence (ECAI-2010) [10]. L’article présenté à ICAPS-2010 présente les
fondements de base derrière la nouvelle approche de planification proposée,
c’est-à-dire la combinaison d’un planificateur à chainage avant avec un réseau
bayésien pour la représentation de l’incertitude sur le temps [9]. L’article pré-
senté à ECAI-2010 généralise cette approche aux ressources continues [10]. En
plus de détailler ces deux articles, l’article présenté dans ce chapitre va plus
loin. Une extention est faite à la planification conditionnel. Des plans condi-
tionnels sont construits en fusionnant des plans générés par le planificateur
non conditionnel. L’article a été rédigé par Éric Beaudry sous la supervision
de Froduald Kabanza et de François Michaud.

9

Planning with Concurrency under Time and
Resource Constraints and Uncertainty

Éric Beaudry, Froduald Kabanza
Département d’informatique, Université de Sherbrooke,

Sherbrooke, Québec, Canada J1K 2R1
eric.beaudry@usherbrooke.ca, froduald.kabanza@usherbrooke.ca

François Michaud
Département de génie électrique et de génie informatique,

Université de Sherbrooke,
Sherbrooke, Québec, Canada J1K 2R1

francois.michaud@usherbrooke.ca

Abstract

Planning with action concurrency under time and resource constraints and
uncertainty represents a challenging class of planning problems in AI. Cur-
rent probabilistic planning approaches relying on a discrete model of time
and resources are limited by a blow-up of the search state-space and of the
number of state transitions. This paper presents ActuPlan, a planner
based on a new planning approach which uses a continuous model of time
and resources. The uncertainty on time and resources is represented by
continuous random variables which are organized in a dynamically gener-
ated Bayesian network. A first version of the planner, ActuPlannc, per-
forms a forward-search in an augmented state-space to generate near op-
timal nonconditional plans which are robust to uncertainty (threshold on
the probability of success). ActuPlannc is then adapted to generate a set
of nonconditional plans which are characterized by different trade-offs be-
tween their probability of success and their expected cost. A second version,
ActuPlan, builds a conditional plan with a lower expected cost by merging
previously generated nonconditional plans. The branches are built by con-
ditioning on the time. Empirical experimentation on standard benchmarks
demonstrates the effectiveness of the approach.

10

1.1. Introduction

1.1 Introduction

Planning under time and resource constraints and uncertainty becomes a problem
with a high computational complexity when the execution of concurrent (simultane-
ous) actions is allowed. This particularly challenging problem is motivated by real-
world applications. One such application is the planning of daily activities for the
Mars rovers [17]. Since the surface of Mars is only partially known and locally uncer-
tain, the duration of navigation tasks is usually unpredictable. The amount of energy
consumed by effectors and produced by solar panels is also subject to uncertainty.
The generation of optimal plans for Mars rovers thus requires the consideration of
uncertainty at planning time.

Another application involving both concurrency and uncertainty is the task plan-
ning for robots interacting with humans. From our experience at the AAAI Robot
Challenge 2005 and 2006 [49], one difficulty we faced was the unpredictable dura-
tion of the human-robot interaction actions. Navigating in a crowd is difficult and
makes the navigation velocity unstable. To address uncertainty, we adopted several
non-optimal strategies like reactive planning [7] and we used a conservative planning
model for the duration of actions. A more appropriate approach would require to
directly consider uncertainty during planning. There exist other applications such as
transport logistics which also have to deal with simultaneous actions and uncertainty
on time and resources [4, 21].

The class of planning problems involving both concurrency and uncertainty is
also known as Concurrent Probabilistic Temporal Planning (CPTP) [47]. Most state-
of-the-art approaches handling this class of problems are based on Markov Decision
Processes (MDPs), which is not surprising since MDPs are a natural framework for
decision-making under uncertainty. A CPTP problem can be translated into a Con-
current MDP by using an interwoven state-space. Several methods have been devel-
oped to generate optimal and sub-optimal policies [45, 43, 46, 47, 56].

An important assumption required by most of these approaches is the time align-
ment of decision epochs in order to have a finite interwoven state-space. As these
approaches use a discrete time and resources model, they are characterized by a huge
state explosion. More specifically, in the search process, an action having an uncertain

11

1.1. Introduction

duration produces several successor states each associated to different timestamps.
Depending on the discretization granularity, this results in a considerable number of
states and transitions. Thus, the scalability to larger problems is seriously limited by
memory size and available time.

Simulation-based planning approaches represent an interesting alternative to pro-
duce sub-optimal plans. An example of this approach is the Generate, Test and Debug
(GTD) paradigm [64] which is based on the integration of a deterministic planner and
a plan simulator. It generates an initial plan without taking uncertainty into account,
which is then simulated using a probabilistic model to identify potential failure points.
The plan is incrementally improved by successively adding contingencies to the gener-
ated plan to address uncertainty. However, this method does not provide guaranties
about optimality and completeness [46]. The Factored Policy Gradient (FPG) [18]
is another planning approach based on policy-gradient methods borrowed from rein-
forcement learning [61]. However, the scalability of FPG is also limited and it does
not generate optimal plans.

Because current approaches are limited in scalability or are not optimal, there is
a need for a new and better approach. This paper presents ActuPlan, a planner
based on a different planning approach to address both concurrency and numerical
uncertainty 1. Instead of using an MDP, the presented approach uses a determin-
istic forward-search planner combined with a Bayesian network. Two versions of
ActuPlan are presented. The first planner one is ActuPlannc and generates non-
conditional plans which are robust to numerical uncertainty, while using a continuous
time model. More precisely, the uncertainty on the occurrences of events (the start
and end time of actions) is modelled using continuous random variables, which are
named time random variables in the rest of this paper. The probabilistic condi-
tional dependencies between these variables are captured in a dynamically-generated
Bayesian network. The state of resources (e.g., amount of energy or fuel) are also
modelled by continuous random variables and are named numerical random variables
and also added to the Bayesian network.

With this representation, ActuPlannc performs a forward-search in an aug-

1. In the rest of this paper, the expression numerical uncertainty is used to simply designate
uncertainty on both time and continuous resources.

12

1.1. Introduction

mented state-space where state features are associated to random variables to mark
their valid time or their belief. During the search, the Bayesian network is dynami-
cally generated and the distributions of random variables are incrementally estimated.
The probability of success and the expected cost of candidate plans are estimated by
querying the Bayesian network. Generated nonconditional plans are near optimal
in terms of expected cost (e.g., makespan) and have a probability of success greater
than or equal to a given threshold. These plans are well suited for agents which are
constrained to execute deterministic plans.

ActuPlan, the second planner, merges several nonconditional plans. The non-
conditional planning algorithm is adapted to generate several nonconditional plans
which are characterized by different trade-offs between their probability of success and
their expected cost. The resulting conditional plan has a lower cost and/or a higher
probability of success than individual nonconditional plans. At execution time, the
current observed time is tested in order to select the best execution path in the con-
ditional plan. The switch conditions within the plan are built through an analysis
of the estimated distribution probability of random variables. These plans are better
suited for agents allowed to make decisions during execution. In fact, conditional
plans are required to guarantee the optimal behaviour of agents under uncertainty
because many decisions must be postponed to execution time.

This paper extends two previously published papers about planning with concur-
rency under uncertainty on the duration of actions and on resources. The first one
presented the basic concepts of our approach, i.e. the combination of a deterministic
planner with a Bayesian network [9]. The second one generalized this approach to
also consider uncertainty on continuous resources [10]. This paper goes further and
presents a conditional planner generating plans which postpone some decisions to
execution time in order to lower their cost.

The rest of this paper is organized as follows. Section 1.2 introduces the definition
of important structures about states, actions, goals and plans. Section 1.3 introduces
the nonconditional planning algorithm (ActuPlannc) and related concepts. Sec-
tion 1.4 presents the conditional planning approach (ActuPlan). Experiments are
reported in Section 1.5. Section 1.6 discusses related works. We conclude with a
summary of the contributions and ideas for future work.

13

1.2. Basic Concepts

1.2 Basic Concepts

The concepts presented herein are illustrated with examples based on the Trans-
port domain taken from the International Planning Competition 2 of the International
Conference on Automated Planning and Scheduling. In that planning domain, which
is simplified as much as possible to focus on important concepts, trucks have to de-
liver packages. A package is either at a location or loaded onto a truck. There is no
limit on the number of packages a truck can transport at the same time and on the
number of trucks that can be parked at same location.

1.2.1 State Variables

State features are represented as state variables [53]. There are two types of state
variables: object variables and numerical variables. An object state variable x ∈ X
describes a particular feature of the world state associated to a finite domain Dom(x).
For instance, the location of a robot can be represented by an object variable whose
domain is the set of all locations distributed over a map.

A numerical state variable y ∈ Y describes a numerical feature of the world
state. A resource like the current energy level of a robot’s battery is an example of
a state numerical variable. Each numerical variable y has a valid domain of values
Dom(y) = [ymin, ymax] where (ymin, ymax) ∈ R2. The set of all state variables is noted
Z = X ∪ Y . A world state is an assignment of values to the state variables, while
action effects (state updates) are changes of variable values. It is assumed that no
exogenous events take place; hence only planned actions cause state changes.

For instance, a planning problem in the Transport domain has the following ob-
jects: a set of n trucks R = {r1, . . . , rn}, a set m of packages B = {b1, . . . , bm} and
a set of k locations L = {l1, . . . , lk} distributed over a map. The set of object state
variables X = {Cr, Cb | r ∈ R, b ∈ B} specifies the current location of trucks and
packages. The domain of object variables is defined as Dom(Cr) = L (∀r ∈ R) and
Dom(Cb) = L ∪ R (∀b ∈ B). The set of numerical state variables Y = {Fr | r ∈ R}
specifies the current fuel level of trucks.

2. http://planning.cis.strath.ac.uk/competition/domains.html

14

1.2. Basic Concepts

1.2.2 Time and Numerical Random Variables

The uncertainty related to time and numerical resources is represented using con-
tinuous random variables. A time random variable t ∈ T marks the occurrence of an
event, corresponding to either the start or the end of an action. An event induces a
change of the values of a subset of state variables. The time random variable t0 ∈ T
is reserved for the initial time, i.e., the time associated to all state variables in the
initial world state. Each action a has a duration represented by a random variable
da. A time random variable t ∈ T is defined by an equation specifying the time at
which the associated event occurs. For instance, an action a starting at time t0 will
end at time t1, the latter being defined by the equation t1 = t0 + da.

Uncertainty on the values of numerical state variables is also modelled by random
variables. Instead of crisp values, state variables have as values numerical random
variables. We note N the set of all numerical random variables. A numerical random
variable is defined by an equation which specifies its relationship with other random
variables. For instance, let y be a numerical state variable representing a particular
resource. The corresponding value would be represented by a corresponding random
variable, let’s say n0 ∈ N . Let the random variable consa,y represent the amount of
resource y consumed by action a. The execution of action a changes the current value
of y to a new random variable n1 defined by the equation n1 = n0 − consa,y.

1.2.3 States

A state describes the current world state using a set of state features, that is, a
set of value assignations for all state variables.

A state s is defined by s = (U ,V ,R,W) where:
– U is a total mapping function U : X → ∪x∈XDom(x) which retrieves the current
assigned value for each object variable x ∈ X such that U(x) ∈ Dom(x).

– V is a total mapping function V : X → T which denotes the valid time at which
the assignation of variables X have become effective.

– R is a total mapping function R : X → T which indicates the release time
on object state variables X which correspond to the latest time that over all
conditions expire.

15

1.2. Basic Concepts

– W is a total mapping function W : Y → N which denotes the current belief of
numerical variables Y .

The release times of object state variables are used to track over all conditions
of actions. The time random variable t = R(x) means that a change of the object
state variable x cannot be initiated before time t. The valid time of an object state
variable is always before or equals to its release time, i.e., V(x) ≤ R(x)∀x ∈ X.

The valid time (V) and the release time (R) respectively correspond to the write-
time and the read-time in Multiple-Timeline of SHOP2 planner [28], with the key
difference here being that random variables are used instead of numerical values.

Hence, a state is not associated with a fixed timestamp as in a traditional approach
for action concurrency [2]. Only numerical uncertainty is considered in this paper,
i.e., there is no uncertainty about the values being assigned to object state variables.
Uncertainty on object state variables is not handled because with do not address
actions with uncertainty on their outcomes. Dealing with this kind of uncertainty is
planned as future work. The only uncertainty on object state variables is about when
their assigned values become valid. The valid time V(x) models this uncertainty by
mapping each object state variable to a corresponding time random variable.

Figure 1.1 illustrates an example of a state in the Transport domain. The left side
(a) is illustrated using a graphical representation based on a topological map. The
right side (b) presents state s0 in ActuPlan formalism. Two trucks r1 and r2 are
respectively located at locations l1 and l4. Package b1 is loaded on r1 and package b2

is located at location l3. The valid time of all state variables is set to time t0.

1.2.4 Actions

The specification of actions follows the extensions introduced in PDDL 2.1 [31]
for expressing temporal planning domains. The set of all actions is denoted by A. An
action a ∈ A is a tuple a=(name, cstart, coverall, estart, eend, enum, da) where :

– name is the name of the action;
– cstart is the set of at start conditions that must be satisfied at the beginning
of the action;

– coverall is the set of persistence conditions that must be satisfied over all the

16

1.2. Basic Concepts

l3

l1 l2

1rb1

l4

l0l5

2r

b2

(a) Graphical representation

s0

x

Cr1

Cr2

Cb1

U(x)
l1
l4
r1

V(x)
t0
t0
t0

R(x)
t0
t0
t0

y

Fr1

Fr2

W(y)

n0

n0

Cb2 l3 t0 t0

(b) State representation

Figure 1.1: Example of a state for the Transport domain

duration of the action;
– estart and eend are respectively the sets of at start and at end effects on the
state object variables;

– enum is the set of numerical effects on state numerical variables;
– and da ∈ D is the random variable which models the duration of the action.
A condition c is a Boolean expression over state variables. The function vars(c)→

2X returns the set of all object state variables that are referenced by the condition c.
An object effect e = (x, exp) specifies the assignation of the value resulting from

the evaluation of expression exp to the object state variable x. The expressions
conds(a) and effects(a) return, respectively, all conditions and all effects of action a.

A numerical effect is either a change ec or an assignation ea. A numerical change
ec = (y, numchangea,y) specifies that the action changes (increases or decreases)
the numerical state variable y by the random variable numchangea,y. A numerical
assignation ea = (y, newvara,y) specifies that the numerical state variable y is set to
the random variable newvara,y.

The set of action duration random variables is defined by D = {da | a ∈ A} where
A is the set of actions. A random variable da for an action follows a probability dis-
tribution specified by a probability density function φda : R+ → R+ and a cumulative
distribution function Φda : R+ → [0, 1].

An action a is applicable in a state s if all the following conditions are satisfied:

17

1.2. Basic Concepts

1. state s satisfies all at start and over all conditions of a. A condition c ∈
conds(a) is satisfied in state s if c is satisfied by the current assigned values of
state variables of s.

2. All state numerical variables y ∈ Y are in a valid state, i.e.,W (y) ∈ [ymin, ymax].

Since the value of a numerical state variable is probabilistic, its validity is also
probabilistic. The application of an action may thus cause a numerical state variable
to become invalid. We denote P (W(y) ∈ Dom(y)) the probability that a numerical
state variable y be in a valid state when its belief is modelled by a numerical random
variable W(y) ∈ N .

Table 1.1 presents actions for the Transport domain .

Table 1.1: Actions specification of the Transport domain
Goto(r, la, lb)
cstart Cr = la
eend Cr = lb
duration Normal(dist/speed, 0.2 ∗ dist/speed)
enum Fr-=Normal(dist/rate, 0.3 ∗ dist/rate)

Load(r, l, b)
cstart Cb = l
coverall Cr = l
eend Cb = r
duration Uniform(30, 60)

Unload(r, l, b)
cstart Cb = r
coverall Cr = l
eend Cb = l
duration Uniform(30, 60)

Refuel(r, l)
coverall Cr = l
enum Fr = Fmax,r
duration Uniform(30, 60)

18

1.2. Basic Concepts

1.2.5 Dependencies on Action Duration Random Variables

Bayesian networks provide a rich framework to model complex probabilistic depen-
dencies between random variables [25]. Consequently, the use of continuous random
variables organized in a Bayesian network provides a flexibility for modelling proba-
bilistic dependencies between the durations of actions. Few assumptions about the
independence or the dependence of durations are discussed in this section.

The simplest case is to make the assumption that all actions have independent
durations. Under the independence assumption, the duration of two arbitrary actions
a and b can be modelled by two independent random variables da and db. However,
this assumption may be not realistic for planning applications having actions with
dependent durations. Let actions a and b represent the move of two trucks in traffic. If
it is known that one truck is just following the other, it is reasonable to say that both
actions should have approximately the same duration. This claim is possible because
the uncertainty is not directly related to actions but to the path. This situation can
be easily modelled in a Bayesian network by inserting an additional random variable
dpath which represents the duration of taking a particular path. Consequently, random
variables da and db directly depend on dpath.

Another important consideration concerns several executions of the same action.
Let action a represent the action of moving a truck on an unknown path. Since the
path is unknown, the duration of moving action is then probabilistic. Once the path
is travelled for the first time, it may be reasonable to say that future travels along
the same path will take approximately the same time. Hence we consider that if the
duration of an execution of a is modelled by random variable da which follows the
normal distribution N (µ, σ) 3 , executing action a twice has the total duration 2da
which follows N (2µ, 2σ). It may also be the case that all executions of a same action
have independent durations. For instance, the uncertainty about a may come from
the traffic which is continuously changing. This can be modelled using one random
variable per execution. Thus the total duration of two executions of a corresponds to
da,1 + da,2 which follows N (2µ,

√
2σ).

This discussion about dependence or independence assumptions on action dura-

3. In this thesis, the notation N (µ, σ) is used instead of N (µ, σ2).

19

1.2. Basic Concepts

tion random variables can be generalized to the uncertainty on numerical resources.
Depending on the planning domain, it is also possible to create random variables and
dependencies between time and numerical random variables to model more precisely
the relationship between the consumption and the production of resources and the
duration of actions.

1.2.6 State Transition

Algorithm 1 Apply action function

1. function Apply(s, a)
2. s′ ← s
3. tconds ← maxx∈vars(conds(a)) s.V(x)
4. trelease ← maxx∈vars(effects(a)) s.R(x)
5. tstart ← max(tconds, trelease)
6. tend ← tstart + da
7. for each c ∈ a.coverall
8. for each x ∈ vars(c)
9. s′.R(x)← max(s′.R(x), tend)
10. for each e ∈ a.estart
11. s′.U(e.x)← eval(e.exp)
12. s′.V(e.x)← tstart
13. s′.R(e.x)← tstart
14. for each e ∈ a.eend
15. s′.U(e.x)← eval(e.exp)
16. s′.V(e.x)← tend
17. s′.R(e.x)← tend
18. for each e ∈ a.enum
19. s′.W(e.y)← eval(e.exp)
20. returns s′

The planning algorithm expands a search graph in the state space and dynamically
generates a Bayesian network which contains random variables.

Algorithm 1 describes the Apply function which computes the state resulting
from application of an action a to a state s. Time random variables are added to
the Bayesian network when new states are generated. The start time of an action is
defined as the earliest time at which its requirements are satisfied in the current state.
Line 3 calculates the time tconds which is the earliest time at which all at start and over
all conditions are satisfied. This time corresponds to the maximum of all time random

20

1.2. Basic Concepts

variables associated to the state variables referenced in the action’s conditions. Line
4 calculates time trelease which is the earliest time at which all persistence conditions
are released on all state variables modified by an effect. Then at Line 5, the time
random variable tstart is generated. Its defining equation is the max of all time random
variables collected in Lines 3–4. Line 6 generates the time random variable tend with
the equation tend = tstart + da. Once generated, the time random variables tstart and
tend are added to the Bayesian network if they do not already exist. Lines 7–9 set the
release time to tend for each state variable involved in an over all condition. Lines
10–17 process at start and at end effects. For each effect on a state variable, they
assign this state variable a new value, set the valid and release times to tstart and add
tend. Line 18–19 process numerical effects.

s0

x

Cr1
Cr2
Cb1

U(x)
l1
l4
r1

V(x)
t0
t0
t0

R(x)
t0
t0
t0

Cb2 l3 t0 t0

s1

x

Cr1
Cr2
Cb1

U(x)
l2
l4
r1

V(x)
t1
t0
t0

R(x)
t1
t0
t0

Cb2 l3 t0 t0

Goto(r ,l ,l)1 1 2

y

Fr1
Fr2

W(y)
n0
n0

y

Fr1
Fr2

W(y)
n1
n0

l3

l1 l2

1rb1

l4

l0l5

2r

b2

s1

x

Cr1
Cr2
Cb1

U(x)
l2
l2
r1

V(x)
t1
t2
t0

R(x)
t1
t2
t0

Cb2 l3 t0 t0
y

Fr1
Fr2

W(y)
n1
n2

l3

l1 l2

1rb1

l4

l0l5

2r

b2

l3

l1 l2

1rb1

l4

l0l5

2r

b2

Goto(r ,l ,l)2 4 2

Figure 1.2: Example of two state transitions in the Transport domain

Figure 1.2 illustrates two state transitions. State s1 is obtained by applying the
action Goto(r1, l1, l2) from state s0. The Apply function (see Algorithm 1) works
as follows. The action Goto(r1, l1, l2) has the at start condition Cr1 = l1. Because
Cr1 is associated to t0, we have tconds = max(t0) = t0. Since the action modifies
the Cr1 object state variable, Line 4 computes the time trelease = max(t0) = t0. At

21

1.2. Basic Concepts

t0

=0

t1
=t1+dGoto(r1,l1,l2)

t2
=t0+dGoto(r2,l4,l2)

dGoto(r1,l1,l2)

~N(200, 40)

dGoto(r2,l4,l2)

~N(400, 80)

n0

=0

n1

=n0 - consGoto(r1,l1,l2)

n2

=n0 - consGoto(r2,l4,l2)

consGoto(r1,l1,l2)

~N(2, 0.4)

consGoto(r2,l4,l2)

~N(4, 0.8)

Figure 1.3: Example of a Bayesian network expanded after two state transitions

Line 5, the action’s start time is defined as tstart = max(tconds, trelease) = t0, which
already exists. Then, at Line 6, the time random variable tend = t0 + dGoto(r1,l1,l2) is
created and added to the Bayesian network with the label t1. Figure 1.3 presents the
corresponding Bayesian network. Next, Lines 13–16 apply effects by performing the
assignation Cr1 = l2 and by setting time t1 as the valid time for Cr1 . The application
of the numerical effect creates a new numerical random variable n1 which is associated
to the belief of Fr1 in state s1. As shown in the Bayesian network, n1 is defined by
n1 = n0− consGoto(r1,l1,l2) where consGoto(r1,l1,l2) is a random variable representing the
fuel consumption by the action. State s2 is obtained similarly by applying the action
Goto(r2, l4, l2) from state s1. Since both actions start at time t0, they are started
simultaneously.

1.2.7 Goals

A goal G is a conjunction of deadline conditions over state features. A deadline
condition is a tuple (x, v, dl) ∈ G meaning that state variable x ∈ X has to be assigned
the value v ∈ Dom(x) within deadline dl ∈ R+ time. In this paper, a goal is noted
by the syntax G = {x1 = v1@dl1, . . . , xn = vn@dln}. When a goal condition has no
deadline (dl = +∞), we simply write x = v, i.e. @dl = +∞ is optional.

For a given state and goal, s |= G denotes that all conditions in G are satisfied
in s. Because the time is uncertain, the satisfaction of a goal in a state (s |= G) is
implicitly a Boolean random variable. Thus, P (s |= G) denotes the probability that
state s satisfies goal G.

Note that if a goal has deadlines, then P (s |= G) < 1 generally holds because

22

1.2. Basic Concepts

actions may have a non-zero probability of infinite duration. For that reason, a
goal is generally associated with a threshold α on the desired probability of success.
Consequently, a planning problem is defined by (s0,G, α) where s0 is the initial state.

1.2.8 Plans

A plan is a structured set of actions which can be executed by an agent. Two
types of plans are distinguished in this paper. A nonconditional plan is a plan that
cannot change the behaviour of the agent depending on its observations (e.g. the
actual duration of actions). Contrary to a nonconditional plan, a conditional plan
takes advantage of observations during execution. Hence, the behaviour of an agent
can change according to the actual duration of actions. Generally, a conditional plan
enables a better behaviour of an agent because it provides alternative ways to achieve
its goals.

A nonconditional plan π is defined by a partially ordered set of actions π =
(Aπ,≺π) where:

– Aπ is a set of labelled actions noted {label1:a1, . . . , labeln:an} with ai ∈ A; and
– ≺π is a set of precedence constraints, each one noted labeli ≺ . . . ≺ labelj.
The definition of a plan requires labelled actions because an action can be executed

more than one time in a plan. During execution, actions are executed as soon as their
precedence constraints are satisfied.

Let s0 be the initial state in Figure 1.4 and G = {(Cb1 = l4)} be a goal to
satisfy. The plan π = ({a1: Goto(r1, l1, l2), a2: Unload(r1, l2, b1), a3: Goto(r2, l4, l2),
a4: Load(r2, l2, b1), a5: Goto(r2, l2, l4), a6: Unload(r2, l4, b1)}, {a1 ≺ a2 ≺ a4, a3 ≺
a4 ≺ a5 ≺ a6 }) is a possible solution plan to the problem. This plan starts two
independent actions a1 and a3. Actions a2 is started as soon as a1 is finished. Once
both a2 and a3 are finished, a4 is started. Finally, a5 and a6 are executed sequentially
after a4.

A conditional plan π is defined as a finite state machine (FSM), where each
state contains time switching conditions. In each state, an action is selected to be
started depending on the current time which depends on how long the execution of
previous actions have taken. A example of conditional plan and its construction are

23

1.2. Basic Concepts

l3

l1 l2

1rb1

l4

l0l5

2r

b2

(a) Graphical representation

s0

x

Cr1

Cr2

Cb1

U(x)
l1
l4
r1

V(x)
t0
t0
t0

R(x)
t0
t0
t0

y

Fr1

Fr2

W(y)

n0

n0

Cb2 l3 t0 t0

(b) State representation

Figure 1.4: An initial state in the Transport domain

presented in Section 1.4.
The notation π |= G is used to denote that the plan π is a solution to reach a

state which satisfies the goal G.

1.2.9 Metrics

The quality of a plan π is evaluated by a given metric function cost(π). This
evaluation is made from an implicit initial state s0. Typical cost functions are :

– the expected makespan denoted E[makespan(π)];
– the sum of the cost of actions;
– a formula evaluated on the last state s reached by the exection of π;
– or a linear combination of the expected makespan, the sum of the cost of actions
and of a formula.

In this paper, makespan is used as the cost function for examples. The makespan
of a plan π is computed from the last state s which is reached by its execution and is
evaluated by Equation (1.1). Note that the makespan of a plan is a random variable.

makespan(π) = max
x∈X

s.V(x) (1.1)

24

1.3. ActuPlannc : Nonconditional Planner

1.3 ActuPlannc : Nonconditional Planner

ActuPlannc is the nonconditional planner version of ActuPlan. It performs
a forward-search in the state space. ActuPlan handles actions’ delayed effects, i.e.
an effect specified to occur at a given point in time after the start of an action. The
way the planner handles concurrency and delayed effects is slightly different from a
traditional concurrency model such as the one used in TLPlan [2]. In this traditional
model, a state is augmented with a timestamp and an event-queue (agenda) which
contains delayed effects. A special advance-time action triggers the delayed effects
whenever appropriate.

In ActuPlan, the time is not directly attached to states. As said in Section 1.2.3,
ActuPlan adopts a strategy similar to Multiple-Timeline as in SHOP2 [52]. Time is
not attached to states, it is rather associated with state features to mark their valid
time. However, contrary to SHOP2, our planner manipulates continuous random
variables instead of numerical timestamps. As a consequence, the planner does not
need to manage an events-queue for delayed effects and the special advance-time
action. The time increment is tracked by the time random variables attached to time
features. A time random variable for a feature is updated by the application of an
action only if the effect of the action changes the feature; the update reflects the
delayed effect on the feature.

Algorithm 2 presents the planning algorithm of ActuPlannc in a recursive form.
This planning algorithm performs best-first-search 4 in the state space to find a state
which satisfies the goal with a probability of success higher than a given threshold α
(Line 2). The α parameter is a constraint defined by the user and is set according
to his fault tolerance. If s |= G then a nonconditional plan π is built (Line 3) and
returned (Line 4). The choice of an action a at Line 5 is a backtrack point. A heuristic
function is involved to guide this choice (see Section 1.3.3). The optimization criteria
is implicitly given by a given metric function cost (see Section 1.2.9). Line 6 applies
the chosen action to the current state. At Line 7, an upper bound on the probability
that state s can lead to a state which satisfies goal G is evaluated. The symbol |=∗

is used to denote a goal may be reachable from a given state, i.e. their may exist a

4. To be not confused with Greedy best-first-search [57].

25

1.3. ActuPlannc : Nonconditional Planner

plan. The symbol P denotes an upper bound on the probability of success. If that
probability is under the fixed threshold α, the state s is pruned. Line 8 performs a
recursive call.

Algorithm 2 Nonconditional planning algorithm

1. ActuPlannc(s, G, A, α)
2. if P (s |= G) ≥ α
3. π ← ExtractNonConditionalPlan(s)
4. return π
5. nondeterministically choose a ∈ A
6. s′ ← Apply(s, a)
7. if P (s′ |=∗ G) ≥ α
8. return ActuPlannc(s′, G, A, α)
9. else return FAILURE

1.3.1 Example on Transport domain

Figure 1.5 illustrates an example of a partial search carried out by Algorithm 2 on
a problem instance of the Transport domain. The goal in that example is defined by
G = {Cb1 = l4}. Note that trucks can only travel on paths of its color. For instance,
truck r1 cannot move from l2 to l4. A subset of expanded states is shown in (a).
The states s0, s1 and s2 are the same as previous figures except that numerical state
variables, Fr1 and Fr2 , are not presented to save space.

State s3 is obtained by applying Unload(r1, l2, b1) action from state s2. This
action has two conditions : the at start condition Cb1 = r1 and the over all condition
Cr1 = l2. The action has the at end Cb1 = l2 effect. The start time of this action
is obtained by computing the maximum time of all valid times of state variables
concerned by conditions and all release times of state variables concerned by effects.
The start time is then max(t0, t1) = t1. The end time is t3 = t1 + dUnload(r1,l2,b1).
Because the over all condition Cr1 = l2 exits, the release time R(Cr1) is updated to
t3. This means that another action cannot move truck r1 away from l2 before t3.

State s4 is obtained by applying Load(r2, l2, b1) action from state s3. This action
has two conditions : the at start condition Cb1 = l2 and the over all condition Cr2 = l2.
The action has the at end Cb1 = r2 effect. The start time is then t4 = max(t2, t3).

26

1.3. ActuPlannc : Nonconditional Planner

s0

x

Cr1
Cr2
Cb1

U(x)
l1
l4
r1

V(x)
t0
t0
t0

R(x)
t0
t0
t0

Cb2 l3 t0 t0

l3

l1 l2

1rb1

l4

l0l5

2r

s1

x

Cr1
Cr2
Cb1

U(x)
l2
l4
r1

V(x)
t1
t0
t0

R(x)
t1
t0
t0

Cb2 l3 t0 t0

l3

l1 l2

1rb1

l4

l0l5

2r

Goto(r ,l ,l)1 1 2 Unload(r ,l ,b)1 2 1
s2

x

Cr1
Cr2
Cb1

U(x)
l2
l4
r1

V(x)
t1
t2
t0

R(x)
t1
t2
t0

Cb2 l3 t0 t0

l3

l1 l2

1rb1

l4

l0l5

2r

s3

x

Cr1
Cr2
Cb1

U(x)
l2
l2
l 2

V(x)
t1
t2
t3

R(x)
t3
t2
t3

Cb2 l3 t0 t0

l3

l1 l2

1r

b1

l4

l0l5

2r

Goto(r ,l ,l)2 4 2
s4

x

Cr1
Cr2
Cb1

U(x)
l2
l2
r2

V(x)
t1
t2
t5

R(x)
t3
t5
t5

Cb2 l3 t0 t0

l3

l1 l2

1r

l4

l0l5

2rb1

Load(r ,l ,b)2 2 1

s5

x

Cr1
Cr2
Cb1

U(x)
l2
l4
r2

V(x)
t1
t6
t5

R(x)
t3
t6
t5

Cb2 l3 t0 t0

l3

l1 l2

1r

l4

l0l5

s6

x

Cr1
Cr2
Cb1

U(x)
l2
l4
l 4

V(x)
t1
t6
t7

R(x)
t3
t7
t7

Cb2 l3 t0 t0

l3

l1 l2

1r

l4

l0l5

2r

b1

2rb1

Goto(r ,l ,l)2 2 4 Unload(r ,l ,b)2 4 1

b2 b2 b2 b2 b2 b2 b2

(a) State-space

t0

=0

t1
=t1+dGoto(r1,l1,l2)

t2
=t0+dGoto(r2,l4,l2)

dGoto(r1,l1,l2)

~N(200, 80)

dGoto(r2,l4,l2)

~N(400, 80)

dUnload(r1,l2,b1)

~U(30, 60)

t3
=t1+dUnload(r1,l2,b1)

dLoad(r2,l2,b1)

~U(30, 60)

t5
=t4+dLoad(r2,l2,b1)

dGoto(r2,l2,l4)

~N(400, 80)

t6
=t5+dGoto(r2,l2,l4)

dUnload(r2,l4,b1)

~U(30, 60)

t7
=t6+dUnload(r2,l4,b1)

t4
=max(t2,t3)

(b) Bayesian network

Figure 1.5: Sample search with the Transport domain

The end time is t5 = t4 + dLoad(r2,l2,b1). The goal G is finally satisfied in state s6.
Figure 1.6 shows the extracted nonconditional plan.

Goto(r1,l1,l2)

Unload(r1,l2,b1)

Goto(r2,l4,l2)

Load(r2,l2,b1)

Goto(r2,l2,l4)

Unload(r2,l4,b1)

1r

2r

1r

b1

b1

2rb1

2rb1

2r

b1

l1 l2

l2

l2l4

l2

l2 l4

l4

Figure 1.6: Extracted nonconditional plan

27

1.3. ActuPlannc : Nonconditional Planner

1.3.2 Bayesian Network Inference Algorithm

A Bayesian network inference algorithm is required to estimate the probability of
success and the expected cost (e.g., makespan) of plans. The computation of these
values requires the estimation of the distribution of the various random variables
involved. In general, the choice of an inference algorithm for Bayesian networks is
guided by the structure of the Bayesian network and by the type of random variables it
includes [25]. In our case, the Bayesian network contains continuous random variables.
Analytical inference methods are possible if some restrictions can be imposed on the
variables probability distributions. In particular, normal distributions are often used
because they can be defined by two parameters (mean µ and standard deviation σ),
which makes them suitable for analytical approaches.

In our approach, the time random variables (t ∈ T) cannot be constrained to
follow normal distributions because their equations may contain several instances of
themax operator which appears in the Apply function. Even if two random variables
t1 and t2 are normally distributed, the resulting random variable t3 = max(t1, t2)
is not normally distributed. Therefore, our approach leads to arbitrary forms of
probabilistic distributions.

Because there exists no exact and analytical method for Bayesian networks having
arbitrary types of distribution, approximate inference algorithms have to be used [25].
A direct sampling algorithm for the Bayesian network inferences is adopted [25]. This
algorithm consists in simulating the whole Bayesian network. A topological sort is
made on the random variables. Root random variables are initially sampled from
their following distribution. Other random variables are then sampled as soon as
their parents have been sampled. The samples of non-root random variables are
generated by evaluating their equations, which involve the samples of their parents.
Once all random variables are processed, exactly one sample has been generated
for each random variable. By running n independent simulations, an array of n
independent samples m1, . . . ,mn are generated for each random variable. From an
array of samples of a random variable, a sample mean µ̂ is evaluated by Equation (1.2).

µ̂ =
∑n
i mi

n
(1.2)

28

1.3. ActuPlannc : Nonconditional Planner

Since a finite number of samples are generated for each random variable, µ̂ is an
estimator of the real expected value µ = E[t]. Some guaranties about the quality of
the estimation can be given. This quality is described by an absolute error e under a
given confidence level of γ. A confidence level γ means that |µ̂− µ| ≤ e holds with a
probability of γ. The error e can be estimated as follows. Each generated sample mi

is a random variable which follows the distribution of the estimated random variable.
By the central limit theorem, the samples mean µ̂ = m1

n
+ · · · + mn

n
asymptotically

follows a normal distribution N (µ, σ√
n
) when the number of samples n increases. In

practice, since the real standard deviation σ of X is generally unknown, an estimated
σ̂ can be used and is defined by Equation (1.3) [25, 40].

σ̂ =
√∑n

i (mi − µ̂)2

n− 1 (1.3)

Consequently, the error µ̂ − µ follows the normal distribution N (0, σ̂√
n
). The

probability that the estimated mean is under a fixed maximum error e is given by
Equation (1.4) where Φ(·) is the cumulative probability function of N (0, σ̂√

n
). Equa-

tion (1.5) is then obtained.

γ = P (|µ̂− µ| < e) = Φ(e)− Φ(−e) (1.4)

Φ(−e) = 1− γ
2 (1.5)

If γ is a fixed confidence level, a maximum error e is estimated by Equation (1.6).

e = Φ−1
(1− γ

2

)
(1.6)

Equation (1.7) is then obtained by using the cumulative probability function of
normal distribution N (1, 0). The absolute estimation error of the expected mean
of random variables is proportional to the standard deviation σ of X and inversely
proportional to the squared root of the number of samples n.

e = Φ−1
N (1,0)

(1− γ
2

)
× σ̂√

n
(1.7)

29

1.3. ActuPlannc : Nonconditional Planner

Incremental Estimation

The Bayesian network is constructed dynamically during the search process, more
precisely when the Apply function (Algorithm 1) is invoked. Once a new numerical
random variable or a new time random variable is created (see tstart and tend in
Algorithm 1), it is added to the Bayesian network and its probability distribution
is immediately estimated. The distributions of random variables are required by
the heuristic function to guide the planning search, and to estimate the probability
that a candidate plan satisfies the goal. Because the Bayesian network is generated
dynamically, we want to avoid evaluating the entire Bayesian network every time a
new random variable is added. In the worst case, adopting this strategy would indeed
require n(n− 1)/2 evaluations for a network of n nodes.

t0 ~0.0

0 0 0 0 0 0 0 ...

t1 =t0+dGoto(r1,l1,l2)

155 300 143 222 233 279 245 ...

t2=t0+dGoto(r2,l4,l2)

440 394 307 512 430 440 345 ...

dGoto(r1,l1,l2) ~N(200.0,80.0)

155 300 143 222 233 279 245 ...

dGoto(r2,l4,l2) ~N(400.0,80.0)

440 394 307 512 430 440 345 ...

t3 =t1+dUnload(r1,l2,b1)

213 343 195 265 289 331 296 ...

t4 =max(t2,t3)

440 394 307 512 430 440 345 ...

dUnload(r1,l2,b1) ~U(30.0,60.0)

58 43 52 43 56 51 51 ...

dLoad(r2,l2,b1) ~U(30.0,60.0)

50 38 48 57 54 56 46 ...

t5 =t4+dLoad(r2,l2,b1)

490 432 355 569 484 496 391 ...

t6 =t5+dGoto(r2,l2,l4)

870 856 819 905 861 952 816 ...

dGoto(r2,l2,l4) ~N(400.0,80.0)

379 424 463 336 376 457 425 ...

t7=t6+dUnload(r2,l4,b1)

922 906 874 938 893 988 869 ...

dUnload(r2,l4,b1) ~U(30.0,60.0)

53 50 55 34 33 36 53 ...

Figure 1.7: Random variables with samples

To reduce computation time, the generated samples are kept in memory. More
precisely, each random variable t has an array ofm samplesMx = 〈mt,1,mt,2, ...,mt,m〉.
Figure 1.7 shows a partial inference on the Bayesian network of the previous example
(Figure 1.5 (b)). The ith samples of all random variables correspond to an independent
simulation of the entire Bayesian network. When a new random variable is added, it
is evaluated by generating a new array of samples. The values of these samples are
computed by using the samples of the parent variables, which are already available
because they were kept in memory. This incremental strategy makes the computation

30

1.3. ActuPlannc : Nonconditional Planner

time equivalent to estimating the entire Bayesian network once.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

Time

t1
t2
t3
t4
t5
t6
t7

Figure 1.8: Estimated cumulative distribution functions (CDF) of random variables

Figure 1.8 shows the estimation of cumulative distribution functions of time ran-
dom variables. The large red curve (t7) represents the probability that package b1

has arrived to location l4 in function of a given time. For instance, if the deadline is
time 1000 then the probability of satisfying it is greater than 0.8.

Samples Caching

The incremental belief estimation of random variables costs O(nm) in memory
size where n is the number of random variables and m is the number of samples.
Since the number of samples can be relatively large (few thousands), this method is
limited by the size of available memory in practice.

To cope this limitation, we propose a caching mechanism to only keep the gener-
ated samples of the most recently accessed random variables. During the search, a
lot of states are added to the open and closed sets without being accessed until much
later. The random variables attached to these states are also rarely accessed. Hence,
the samples of these random variables may be temporarily freed. The freed samples
could easily be regenerated on demand in the future. To guarantee the generation
of exactly the same array of samples, root nodes in the Bayesian network are always
kept in memory. Remember that root nodes correspond to the duration of actions and

31

1.3. ActuPlannc : Nonconditional Planner

the use of resources. The memory requirement for keeping those arrays of samples
in memory is linearly proportional to the number of applicable grounded actions in
the planning domain. The impact of the samples caching mechanism is evaluated in
Section 1.5.2.

1.3.3 Minimum Final Cost Heuristic

Forward-search-based planners generally require heuristics to be efficient. Heuris-
tics can be dependent or independent to the domain. Dependent heuristics are less
general because they require to be specified by the user.

Basically, domain independent heuristics evaluate or estimate a minimum distance
to the goal. For instance, HSP [15] and Fast-Forward (FF) [33] planners use a relaxed
planning graph as a heuristic. This technique has been adapted in SAPA for temporal
planning [28]. ActuPlan adapts this technique to time uncertainty.

Algorithm 3 presents a heuristic function which estimates a minimum final cost
of a plan which passes by the state s. The returned value is slightly different from
best-first-search and A∗ where heuristics estimate h to compute f = g + h. The
notion of remaining cost from a state to a goal is ill-defined in our approach because
a state does not have a unique time. A state may have several state variables, each
one associated to different time random variables. Therefore, the heuristic directly
evaluates a lower bound on the total final cost (f in A∗) instead of estimating the
remaining cost (h).

Algorithm 3 proceeds as follows. The minimal cost of each possible assignment
of each state variable is tracked into the mapping function Cmin : (X,Dom(x))→ R.
Line 2 initializes the Cmin function to +∞ over its domain. Then at Lines 3–4, the
minimum cost for the current value of each state variable is set to its valid time.
Line 6 loops on all possible actions a ∈ A. If an action can reduce the minimum
cost of an assignment x = v then Cmin(x, v) is updated. The loop of Line 5 performs
updates until there is no minimum cost reduction or until the goal is satisfied. The
SatisfiedCost function returns a lower bound on the cost required to satisfy G by
considering Cmin.

Because time and resources are probabilistic, the cost and the probability of suc-

32

1.3. ActuPlannc : Nonconditional Planner

Algorithm 3 Evaluate minimum final cost heuristic function

1. function EvaluateMinimumFinalCost(s, G)
2. Cmin(., .)← +∞
3. for each x ∈ X
4. Cmin(x, s.U(x))← V(x)
5. while SatisfiedCost(Cmin,G)= +∞
6. for each a ∈ A
7. s← build a state from Cmin satisfies a
8. s′ ← Apply(s, a)
9. for each x ∈ vars(effects(a))
10. Cmin(x, s.U(x))← min(Cmin(x, s.U(x)), s′.V(x))
11. return SatisfiedCost(Cmin,G)

cess of a plan are also probabilistic. Definition 1.3.1 revises the notion of admissibility
of a heuristic defined in a domain with time uncertainty.

Definition 1.3.1. A heuristic is probabilistically admissible if Equation (1.8) is satis-
fied for any fixed probability threshold α. The cost of a single execution of an optimal
plan is designated by cost(exec(π∗, s0)). Hence, the probability that the heuristic does
not overestimate the remaining cost of an optimal plan is greater than or equal to α.

P (EvaluateMinimumFinalCost(s,G) ≤ cost(exec(π∗, s0))) ≥ α (1.8)

To speed up the evaluation of the heuristic function in Algorithm 3, all calculations
are done using scalar values instead of random variables. Hence the domain of the
function Cmin is R instead of the set of time random variables T . Thus, at Line
4, the time random variable V(x) is translated into a numerical value. To satisfy
the probabilistic admissibility, the inverse of the cumulative distribution function
of time random variables is used and denoted as Φ−1. Then, Line 4 is replaced
by Equation (1.9). Line 10 is also adapted similarly. The Apply function uses
Φ−1
dax

(min(α, 0.5)) as scalar duration.

Cmin(x,U(x))← min
(
Φ−1
T (x)(α), E[V(x)]

)
(1.9)

Theorem 1.3.1. The heuristic function presented in Algorithm 3 is probabilistically
admissible.

33

1.3. ActuPlannc : Nonconditional Planner

Proof. Algorithm 3 is an adaption of a minimum distance to goal for planning prob-
lems with concurrency and uncertainty of continuous values. For fully deterministic
planning, this kind of heuristic never overestimates the optimal cost [15]. Because
it ignores delete (negative) effects, the cost of the generated relaxed plan is a lower
bound on the cost of an optimal plan.

Now consider time uncertainty. As previously said, the heuristic function is eval-
uated using scalar values rather than random variables. We have to make sure that
queries to the inverse of the cumulative distribution function do not overestimate the
remaining cost of an optimal plan. Basically, equations of time random variables (T)
are expressed using two operators: the sum operator to compute the end time of an
action, and the max operator to compute the start time of an action.

The case of the sum operator corresponds to a sequence of actions a1, . . . , an. This
generates a time random variable tend defined by the equation tend = da1 + · · ·+ dan .
In that case, Equation (1.10) shows that the heuristic function does not overestimate
the optimal final cost.

n∑
i=1

Φ−1
di

(min(α, 0.5)) ≤ Φ−1
tend

(α) (1.10)

The case of the max operator corresponds to when an action b requires the com-
pletion of other actions a1, . . . , an. Therefore, the start time of the action b is defined
by a random variable tstart = max(da1 , . . . , dan). In that case, Equation (1.11) shows
that the heuristic function does not overestimate the optimal final cost.

nmax
i=1

Φ−1
dai

(α) ≤ Φ−1
tstart

(α) = Φ−1
max(da1 ,...,dan)(α) (1.11)

The heuristic is thus probabilistically admissible.

1.3.4 State Kernel Pruning Strategy

Definition 1.3.2. The kernel of a state s = (U ,V ,R,W) is defined by kernel(s) =
(U). This corresponds to a world state trimmed of the time information.

Definition 1.3.3. A state s dominates another state s′ when :

34

1.3. ActuPlannc : Nonconditional Planner

– kernel(s) = kernel(s′);
– and s.V (x) ≤ s′.V (x)∀x ∈ X;
– and s.R(x) ≤ s′.R(x)∀x ∈ X;
– and s.W (y) ≤ s′.W (y)∀y ∈ Y .
A state s strictly dominates another state s′ when at least one of the three ≤ can

be replaced by < for a state variable x ∈ X or y ∈ Y .

Theorem 1.3.2. In Algorithm 2, without sacrificing optimality, a state s can be
pruned when another already visited state s′ dominates s.

1.3.5 Completeness and Optimality

This section discusses about the completeness and optimality of ActuPlannc.
Few assumptions are required to provide some guarantees about these properties. The
first assumption is that the planning time horizon has to be finite. This assumption
is reasonable because it is possible to fix an upper bound on the maximum duration
of the optimal plan. In the presence of deadlines, this upper bound can be set to the
latest deadline. Another assumption is that actions have a strictly positive expected
duration. Combined together, these assumptions guarantee the state space to be
finite.

It has been demonstrated that decision-epoch planners can be incomplete for par-
ticular planning domains which require concurrency [24]. Problems requiring concur-
rency includes domains having action with at end conditions. When at end conditions
require synchronizations with other actions, limiting decision epochs to the end of ac-
tions is incomplete [24]. Since this this kind of problems is not addressed in this
paper, at end conditions are proscribed. Allowed planning domains by ActuPlannc

are less general than full PDDL. However, at end conditions are rarely involved in
typical planning problems. Moreover, when there is uncertainty on the duration of
actions, at end conditions are not appropriate.

As presented in Section 1.3.2, ActuPlan relies on an approximate sampling al-
gorithm to estimate continuous random variables. Thus optimality cannot be guaran-
teed. Definitions 1.3.4 and 1.3.5 introduce the notions of optimality and ε-optimality
about nonconditional plans.

35

1.3. ActuPlannc : Nonconditional Planner

Definition 1.3.4. A nonconditional plan π∗ is optimal for a fixed threshold α on the
probability of success when P (π∗ |= G) ≥ α and no other nonconditional plan π such
P (π |= G) ≥ α and E[cost(π)] < E[cost(π∗)] exists.

Definition 1.3.5. A nonconditional plan π∗ is ε-optimal for a fixed threshold α on
the probability of success when P (π∗ |= G) ≥ α and no other nonconditional plan π
such P (π |= G) ≥ α and E[cost(π)] + ε < E[cost(π∗)] exists.

Theorem 1.3.3. ActuPlannc (Algorithm 2) generates nonconditional plans which
are ε1-optimal and has a probability of failure smaller than ε2. Both ε1 and ε2 can be
arbitrary small by using a sufficient number of samples m and are computed under a
given confidence level γ.

Proof. Algorithm 2 performs a best-first-search which is complete and optimal [57].
However, there is two issues in ActuPlan because an approximate algorithm is
involved to estimate random variables. Since (1) the goal satisfaction condition s |= G
and (2) the cost cost(π) of the returned plan π are random variables, estimation errors
have consequences on completeness, correctness and optimality.

The first consequence is about the completeness and correctness. Since an approx-
imate algorithm is used, condition at Line 2 of Algorithm 2 (P (s |= G) ≥ α) may fail
to branch correctly. The condition P (s |= G) ≥ α may be estimated to be true while
the real probability is smaller than α. The reverse is also possible. A probability of
failure ε2 can be estimated since P (s |= G) ≥ α is a Boolean random variable. The
error ε2 tends to zero when the number of samples m tends to infinity.

The second consequence is about the optimality. The nondeterministic choices at
Line 5 of Algorithm 2 is implemented by an open list in the best-first-search algorithm.
The open list requires to be sorted in an increasing order of an evaluation function,
which is the cost of plans related to states. Since the costs are random variables,
estimation errors on them perturbes the sorting order. This means than the real
cost of the first element can be higher than another element in the list. Thus, a
non-optimal plan could be returned instead the real one. However, an upper bound
ε1 can be estimated on the difference of the cost of the first element and the real
minimal cost. This upper bound ε1 is related to the maximum estimation error of the

36

1.3. ActuPlannc : Nonconditional Planner

cost evaluation function of plans. Thus, generated plans are ε1-optimal. The error ε1
tends to zero when the number of samples m tends to infinity.

1.3.6 Finding Equivalent Random Variables

To prevent an infinite loop, forward-search and state-space-based planning algo-
rithms require to test whether a state s has already been visited. Finding equivalent
states is also important to reduce the size of the state space. Recall that two states are
equivalent if their mapping functions U ,V ,R,W are equivalent. Because functions V
and R involve time random variables, and W involves numerical random variables,
the notion of equivalence for random variables has to be defined.

Definition 1.3.6. Two random variables are equivalent if and only if they always
take the same value.

A simple way to find equivalent random variables could be to compare their equa-
tions. Two random variables both described by the same equation implies that they
have the same value. However, two time random variables may be equivalent even if
their equations are not the same.

Consider a situation where two actions a1 and a2 cannot be executed concurrently,
and thus have to be executed sequentially. Time t0 is the initial time. Executing a1

and a2 successively leads to times t1 and t3. The reverse order leads to times t2 and
t4. Figure 1.9 shows the Bayesian network for this situation. Equations are shown in
the second block of each random variable. Since t2 and t4 have different equations,
they would be considered as two different random variables, although they clearly
both represent the same duration. Thus both states would need to be explored by
the planner. To reduce the search space, a better method for testing the equivalence
of random variables is required.

Canonical Representation

To find equivalent random variables, it is possible to analytically compare their
equations in a canonical form. Thus, two random variables are equivalent if and only
if their equations in a canonical form are the same. An equation can be transformed

37

1.3. ActuPlannc : Nonconditional Planner

t0 ~0

t2 =t0+da2 =t0+da2t1 =t0+da1 =t0+da1

da2~N(µ2,σ2)

t3 =t1+da2 =t0+da1+da2t4 =t2+da1 =t0+da1+da2

da1~N(µ1,σ1)

Figure 1.9: Sample Bayesian network with equations in original form (2nd block) and
canonical form (3rd block)

in canonical form by only using root random variables. An example is shown in
Figure 1.9 where equations displayed in the third block of each random variable are
in a canonical form. Because t3 and t4 have the same canonical representation, they
are equivalent. Thus, t4 can be eliminated and be replaced by t3.

Unfortunately a canonical form for equations has a significant cost. The size of
an equation in a canonical form for a random variable grows with its depth in the
Bayesian network. For instance, the execution of n actions produces n time random
variables t1, t2, . . . , tn. The ith random variable has i terms : ti = t0 + da1 + · · ·+ dai

.
Adopting this strategy costs Ω(n× d) in memory and time where n is the number of
random variables and d is the average depth.

Comparing Arrays of Samples

To avoid the cost of a canonical representation, a faster method is adopted. The
equivalence of random variables is tested by simply comparing their arrays of sam-
ples. Remember that only root variables are randomly sampled from their probability
distribution function. Samples of other random variables are rather generated by eval-
uating their equations. This implies that two equivalent random variables will have
exactly the same values in their arrays of samples. Figure 1.10 shows the Bayesian
network with arrays of samples attached to random variables. The variables da1 and
da2 follow the same probability distribution but they are independent, so their gener-
ated arrays of samples are different. The variables t3 and t4 are equivalent since their
arrays of samples are equivalent.

Two random variables having two different arrays of samples is a sufficient condi-
tion to assert their non-equivalence. But is the inverse also true? I.e., are two random

38

1.3. ActuPlannc : Nonconditional Planner

t0 ~0

0.0 0.0 0.0 0.0 ...

t1 =t0+da1

48.1 54.2 51.8 46.5 ...

t2 =t0+da2

58.2 47.2 44.0 53.5 ...

da2 ~N(50,10)

58.2 47.2 44.0 53.5 ...

t3 =t1+da2

106.3 101.4 95.8 100.0 ...

da1 ~N(50,10)

48.1 54.2 51.8 46.5 ...

t4 =t2+da1

106.3 101.4 95.8 100.0 ...

Figure 1.10: Bayesian network with arrays of samples attached to random variables

variables having the same array of samples necessary equivalent? Theoretically, yes
because a real value has a zero probability to be sampled. But this is not true in
practice because floating-point numbers in computers do not have an infinite preci-
sion. To cope with numerical errors, a small ε is generally required to compare the
equality of two floating-point numbers. Two samples a and b are judged to be equal
when |a− b| ≤ ε.

This means that, in practice, two non-equivalent random variables could poten-
tially generate approximately the same (close to ε) array of samples. The probability
that two non-equivalent random variables X and Y generate approximately the same
arrays of m samples MX and MY is infinitely small. Let consider two cases involving
uniform and normal distributions.

Let random variables X ∼ U(x1, x2) and Y ∼ U(y1, y2) be independent. Two
arrays of m samples MX and MY are respectively generated from X and Y . The
probability that both arrays are approximately equal (close to an ε) is given by
Equation (1.12). The overlaps function returns the length where invervals X and
Y overlap.

P (MX ≈MY) = ((x2 − x1)× overlaps(X, Y)× (y2 − y1)× ε)m (1.12)

This probability is maximized when both random variables totally overlap and
when they are on a small interval like X ∼ U(0, 1) and Y ∼ U(0, 1). In that case,

39

1.4. ActuPlan : Conditional Plannner

this probability is as infinitely low as 10−140 with ε = 10−7 and only m = 20 samples.
Now consider another case with normal distributions. Let X ∼ N (µ1, σ1) and

Y1 ∼ N (µ2, σ2) be two independent random variables. The probability of generating
approximately the same arrays ofm samplesMX andMY is given by Equation (1.13).

P (MX ≈MY) = [P (|X − Y | ≤ ε)]m (1.13)

Let Z = X − Y . Thus Z ∼ N(µ1 − µ2,
√
σ2

1 + σ2
2). Equation (1.14) is obtained

from Equation (1.13). ΦZ is the cumulative probability function of the distribution
of Z.

P (MX ≈MY) = [P (Z ≤ ε)]m

= [ΦZ(ε)− ΦZ(−ε)]m
(1.14)

The probability of approximate equivalence of samples is maximized when both
random variables have the same mean and have low standard deviations. For in-
stance, let X and Y be two random variables which follow N (0, 1). In that case, this
probability is as infinitely low as 1.1 × 10−142 with ε = 10−7 and only m = 20 sam-
ples. These examples confirm that comparing arrays of samples of random variables
is a reasonable method to test the equivalence of two random variables.

1.4 ActuPlan : Conditional Plannner

The conditional planner is built on top of the nonconditional planner presented in
Section 1.3. The basic idea behind the conditional planner is that the non conditional
planner can be modified to generate several nonconditional plans with different trade-
offs on their probability of success and their cost. A better conditional plan is then
obtained by merging multiple nonconditional plans and time conditions to control its
execution.

1.4.1 Intuitive Example

Before detailing the conditional planner, an intuitive example is presented. Con-
sider the situation presented in Figure 1.11. A truck initially parked in location l2

40

1.4. ActuPlan : Conditional Plannner

l0

b1
b1

1r

Deadline : 1800

l1

l2 l3

l7

l5

l4

l9

l8

l6

b0

b0

Figure 1.11: Example with two goals

has to deliver two packages b0 and b1 from locations l9 and l8 to locations l6 and l8.
The package b0 destined to location l6 has time t = 1800 as a delivery deadline. The
cost is defined by the total duration of the plan (makespan).

Figure 1.12 shows two possible nonconditional plans. The plan πa delivers package
b0 first while plan πb delivers package b1 first. Since package b0 has the earliest
deadline, plan πa has an higher probability of success than plan πb. However, plan
πa has a longer makespan than plan πb because its does not take the shortest path.
If the threshold on the probability of success if fixed to α = 0.8, the nonconditional
plan πa must be returned by ActuPlannc.

A better solution is to delay the decision about which package to deliver first. The
common prefix of plans πa and πb (Goto(r1, l2, l4), Load(r1, l4, b1)) is first executed.
Let the resulting state of this prefix be s2. As illustrated in Figure 1.13, with the
respect of nonconditional plans πa and πb, there is two possible actions : Goto(r1, l4, l8)
or Goto(r1, l4, l9).

Since the duration of the common prefix is uncertain, the decision of which action
to take depends on the current time. If the execution of the prefix is fast, action
Goto(r1, l4, l9) (delivering package b1 first) is the best decision. If not, it is preferable to
choose action Goto(r1, l4, l8) (delivering package b0 first). This decision can be guided

41

1.4. ActuPlan : Conditional Plannner

l0

b1
b1

1r

Deadline : 1800

l1

l2 l3

l7

l5

l4

l9

l8

l6

b0

b0

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 1500 2000 2500

P
ro

b
a
b
ili

ty
 o

f
S

u
c
c
e
s
s

Delivery Time (s)

D
e
a
d
lin

e
 b

0Packages
b0
b1

(a) Plan πa
l0

b1
b1

1r

Deadline : 1800

l1

l2 l3

l7

l5

l4

l9

l8

l6

b0

b0

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 1500 2000 2500

P
ro

b
a
b
ili

ty
 o

f
S

u
c
c
e
s
s

Delivery Time (s)
D

e
a
d
lin

e
 b

0 Packages
b0
b1

(b) Plan πb

Figure 1.12: Possible nonconditional plans

l0

b0

b1

b0

s2

x

Cr1
Cb0

U(x)
l4
l 9

V(x)
t1
t2

R(x)
t2
t2

Cb1 r1 t0 t0

s3

x

Cr1
Cb0

U(x)
l8
l 9

V(x)
t3
t2

R(x)
t3
t2

Cb1 r1 t0 t0

s4

x

Cr1
Cb0

U(x)
l9
l 9

V(x)
t4
t2

R(x)
t4
t2

Cb1 r1 t0 t0

b=Goto(r1,l4,l8)

a=Goto(r1,l4,l9)

l4 l8

l9l5l1

l2 l3 l6 l10

l0

b0

b1

b0

l4 l8

l9l5l1

l2 l3 l6 l10

1rb1

l0

b0

b1

b0

l4 l8

l9l5l1

l2 l3 l6 l10

1rb1

1rb1

Figure 1.13: Possible actions in state s2

42

1.4. ActuPlan : Conditional Plannner

 0

 0.2

 0.4

 0.6

 0.8

 1

 400 500 600 700 800 900 1000
 1500

 1600

 1700

 1800

 1900

 2000

 2100

 2200

 2300

 2400

 2500

P
ro

b
a
b
ili

ty
 o

f
S

u
c
c
e
s
s

C
o
s
t
(i
n
 s

e
c
o
n
d
s
)

Decision Time λ

λ
a
,m

a
x

λ
b
,m

a
x

Legend
P(a|ta=λ) C(a|ta=λ) P(b|tb=λ) C(b|tb=λ)

Figure 1.14: Latest times for starting actions

by the latest time at witch choosing actionGoto(r1, l4, l8) still satisfies the threshold on
the probability of success α. This time can be computed by evaluating the conditional
probability of success knowing the decision time at which Goto(r1, l4, l8) is started.
Figure 1.14 presents a chart which illustrates how this critical time is computed.
Solid lines represent the conditional probability of success of choosing plans πa and
πb while dashed lines represent the conditional cost. If the threshold on the probability
of success is fixed at α = 0.8, then the latest time at which the plan πb can be selected
is around time 652.

1.4.2 Revised Nonconditional Planner

The nonconditional planning algorithm presented in Section 1.3 needs to be re-
vised in order to generate nonconditional plans to be merged later into a better
conditional plan. Algorithm 4 presents the adapted nonconditional planner in an it-
erative form. Basically, the algorithm performs a forward best-first-search to generate
a set of nonconditional plans, each having a probability of success of at least β. The

43

1.4. ActuPlan : Conditional Plannner

nonconditional plans are not explicitly generated. Instead, a search graph is expanded
and the algorithm returns the set of final states F reached by the implicitly-generated
nonconditional plans. The nonconditional plans will later be merged to satisfy the
minimal probability of success α. Each time a state s which satisfies the goal G is
found (Line 9), it is added to the set of final states F . The algorithm terminates when
the open set is empty, i.e., when all reachable states before the allowed time horizon
are visited. If the heuristic is admissible, the algorithm can be also stopped when a
state s is visited with a maximum valid time greater than tα (Line 8). The random
variable tα represents the minimal cost of a nonconditional plan with P (π |= G) ≥ α

(Line 12). The parents attributes contains all parent states from which a state is
accessible (see Line 16).

Algorithm 4 Algorithm for generating a set of nonconditional plans

1. GenerateNonCondPlans(s0, G, A, α, β)
2. open← {s0}
3. close← ∅
4. tα ←∼ N (+∞, 0)
5. while open 6= ∅
6. s← open.RemoveFirst()
7. add s to close
8. if maxx∈X(s.V(x)) > tα exit while loop
9. if P (s |= G) ≥ β
10. add s to F
11. if P (s |= G) ≥ α
12. tα ← min(tα,maxx∈X(s.V(x)))
13. else
14. for each a ∈ A such a is applicable in s
15. s′ ← Apply(s, a)
16. add s′ to s.parents
17. s′.f ← EvaluateMinimumFinalCost(s′, G, β)
18. if s′ /∈ close and P (s′ |=∗ G) ≥ β
19. add s′ to open
20. return F

Theorem 1.4.1. If β = 0+ then Algorithm 4 returns a set of final states F such that
each f ∈ F is reached by at least one successful execution of an optimal conditional
plan.

Proof. Let ω = 〈s0, a1, s1, ..., an, sn〉 be a successful execution trace of an optimal

44

1.4. ActuPlan : Conditional Plannner

conditional plan. Let sn /∈ F , i.e., Algorithm 4 failed to reach sn. This means that
there exists at least one first state si such i > 0 in the execution trace which has not
been visited by Algorithm 4. Since β = 0+, the state si cannot be pruned at Line 9.
This implies that action ai has not been applied in state si−1. Since Line 13 applies
all actions of the domain, this is not possible. The other possibility is that state si−1

has not been visited. This is a contradiction since si is the first state in trace ω which
has not been visited.

By Theorem 1.4.1, an optimal conditional plan can be theoretically built from the
expanded graph of Algorithm 4.

Theorem 1.4.2. Let π∗ be an arbitrary optimal conditional plan and F the set of
final states returned by Algorithm 4. Then, the probability that π∗ reaches a state
f ∈ F is at least 1− β.

Proof. This proof is similar to that of Theorem 1.4.1. Let ω = 〈s0, a1, s1, ..., an, sn〉
be a successful execution trace of an optimal conditional plan π∗. Let sn /∈ F , i.e.,
Algorithm 4 failed to reach sn. This means that there exists at least one first state
si such i > 0 in the execution trace which has not been visited by Algorithm 4.
As explained in the previous proof, the only one possibility is that state si has been
pruned by Line 9. The state can be pruned only if it represents a probability of success
lower than β. Missing states in F are those which are reachable from a sequence of
actions which has a probability of success lower than β. Thus, Algorithm 4 returns
a set of final states F which are reached by a proportion of at least 1− β of possible
successful executions of an optimal conditional plan π∗.

Theorem 1.4.2 is a generalization of Theorem 1.4.1 that guarantees the sub-
optimality of a conditional plan after a call to GenerateNonCondPlans with
β > 0.

Once the set of final states F is found, Algorithm 5 selects the set of candidate
actions s.Ǎ ⊆ A for each state s reachable by Algorithm 4. A candidate action a ∈ s.Ǎ
is any action that can be executed at this point in time. Conditional branches are
generated by the conditional planner to guide the decision concerning which candidate
action to execute in each state.

45

1.4. ActuPlan : Conditional Plannner

Algorithm 5 Algorithm for selecting candidate actions

1. SelectCandidateActions(F , A)
2. open← F
3. S ← ∅
4. while open 6= ∅
5. s← open.RemoveAnElement()
6. add s to S
7. add all s′ ∈ s.parents to open
8. for each s ∈ S
9. for each a ∈ A such a is applicable in s
10. s′ ← Apply(s, a)
11. if s′ ∈ S
12. add a to s.Ǎ

Algorithm 6 Time conditioning planning algorithm

1. ActuPlan(s0, G, A, α, β)
2. F ←GenerateNonCondPlans(s0,G, A, α, β)
3. SelectCandidateActions(F , A)
4. S ← F
5. while S 6= ∅
6. s← pick a state s ∈ S | s′ is visited ∀a ∈ s.Ǎ, s′ = Apply(s, a)
7. if s ∈ F
8. s.Success← s |= G
9. s.F inalCost← Cost(s)
10. else
11. for each a ∈ s.Ǎ
12. sa ← Apply(s, a)
13. λa,max ← find upper bound λ such that E[sa.Success | ta = λ] ≥ α
14. for each a ∈ s.Ǎ
15. sa ← Apply(s, a)
16. λa,min ← find lower bound λ such that
17. λ ≤ λa,max i.e. E[sa.Success | ta = λ] ≥ α
18. and E[sa.F inalCost|ta = λ] ≤ minb∈s.ǍE[Apply(s, b).F inalCost|λ < tb ≤ λb,max]
19. add (a, λa,min, λa,max) to π(s)
20. s.Success←Apply(s,Decision(s, π(s))).Success
21. s.F inalCost←Apply(s,Decision(s, π(s))).F inalCost
22. add all s′ ∈ s.parents to S
23. mark s as visited
24. return π

46

1.4. ActuPlan : Conditional Plannner

1.4.3 Time Conditional Planner

The time conditioning planning algorithm assumes that the only available obser-
vations at execution are the current time and the set of applicable actions. An action
becomes applicable as soon as the assignments of the state variables involved in the
at start conditions become valid. The valid time of these assignments might depend
on the completion of other actions in progress.

The time conditioning planning algorithm is presented in Algorithm 6. Basically,
the algorithm iterates in the graph which has been expanded by the nonconditional
planner (Algorithm 4) in reverse order, i.e. from the final states to the initial state.
For each visited state s, it computes the best conditions on time as to minimize
the expected final cost and to assert a probability of success of at least α, where
β ≤ α ≤ 1.

The algorithm proceeds as follows. At Line 2, the nonconditional planner is called
and returns the set F of final states which satisfy the goal. At Line 3, the function
SelectCandidateActions is called to select the set of candidate actions s.Ǎ for
each state s. The set S contains states to be visited by the while loop of Line 5. It is
initialized with the contents of F at Line 4. Line 6 picks a state s ∈ S such that all
successor states s′ resulting of an application of a candidate action of s has already
been visited by the algorithm. Once the algorithm is in a state s, branching conditions
are computed to dictate how to choose the right candidate action at execution time.

Let s.Ǎ = {a1, . . . , an} be the set of candidate actions for state s. The best decision
is to execute the action which minimizes the expected final cost with a probability
of success greater than or equal to α. However, this choice cannot be instantaneous
because the current state does not represent a snapshot of the environment, but rather
an indication of how the environment progresses forward in time. The time random
variables (s.V(x)) attached to state variables (x ∈ X) model the probabilistic time
at which their assignments (s.U(x)) become valid. Some candidate actions in s.Ǎ

are enabled while others are not, depending on the completion of previous actions.
Moreover, the expected final cost and the probability of success of each choice depends
on the time at which the actions are started. Basically, the decision on whether to
start an action is based on the following question. If a candidate action ai is enabled
at current time λ, should we start it or should we wait in case another better action

47

1.4. ActuPlan : Conditional Plannner

becomes enabled later?
To answer this question, two critical times (λa,min, λa,max) are computed for each

candidate action a ∈ s.Ǎ. The time λa,min is the earliest time at which an action
a must be started if it is enabled. Before time λa,min, if the action is enabled, it is
preferable to wait in case another better candidate action b becomes enabled. The
time λa,max indicates the latest time that an action can be started just before the
resulting probability of success drops under α.

A conditional plan π is a mapping function π : S →⊗
a∈s.Ǎ(a,R+,R+). For a state

s, a decision condition π(s) expressed as a set of tuples π(s) = {(a, λa,min, λa,max) |
a ∈ s.Ǎ}.

These critical times are computed via an analysis of the distribution of random
variables in the Bayesian network. Two new random variables are created for each
state. The Boolean random variable s.Success represents whether the decisions taken
at state s resulted in a successful execution. For final states s ∈ F , it is defined as the
satisfaction of deadlines in G (Line 8). The continuous random variable s.F inalCost
represents the total final cost of an execution resulting from the decisions taken at
state s. For final states s ∈ F , it is defined as the cost of being in those states (Line 9).
For instance, when the cost is the makespan, s.F inalCost = maxx∈X s.V(x) ∀s ∈ F .

Branching conditions are computed in the else block (Line 10). For each candidate
action a, Lines 15-17 compute the earliest time λ at which it is better to execute a
than to wait for another action b. An action a is better at time λ when its expected
cost is less than the expected cost of starting another candidate action b at time tb
which is constrained by λ < tb ≤ λb,max. The critical times are used to build the
conditional plan (Line 18).

Once the decision policy is made for a state s, it is possible to create the random
variables s.Success and s.F inalCost. The probability distribution of these random
variables is obtained by simulating the outcome corresponding to this decision. The
expected cost of the resulting conditional plan is given by E[s0.F inalCost].

Theorem 1.4.3. Algorithm 6 generates an ε-optimal conditional plan π∗ when β =
0+, α = 1 and the set of observations is limited to the current time and the set of
applicable actions.

48

1.4. ActuPlan : Conditional Plannner

Proof. Algorithm 4 (GenerateNonCondPlans) generates a set of nonconditional
plans where each plan represents a path that could be followed by an ε-optimal
conditional plan. For each final state s, random variables s.Success and s.F inalCost
are computed. Their distributions are estimated using the Bayesian network. Up to
the estimation error, this represents the best information available.

Once the final states are evaluated, the ascendent states are recursively evaluated.
The conditions on time for a state are established by minimizing the expected final
cost of the plan and by asserting a probability of success greater than α. This decision
is taken by considering the random variables s.Success and s.F inalCost which have
been previously estimated. Thus, these conditions on time are the best possible
conditions, since they lead to globally-best execution paths. This process is done
repeatedly until the initial state s0 is reached. Therefore, decisions taken at all states
are optimal under these conditions.

Theorem 1.4.4. Algorithm 6 generates a sub-optimal conditional plan when β > 0
and α < 1. A lower bound on the expected cost of an optimal plan π∗ is given by
Equation (1.15).

E [cost(π∗)] =

βE [cost(πβ=0+)] + (1− β)E [cost(π)], if α = 1

E [cost(πβ=0+)] , if α < 1
(1.15)

Proof. Since β > 0, the GenerateNonCondPlans algorithm may miss some pos-
sible execution paths with small probabilities of success, but also with a lower cost.
Since these missed possible execution paths are less frequent than β, it is possible to
assume that they will be executed at most by a proportion of β. The best possible
cost of these execution paths is the cost of the best nonconditional plan πβ=0+ with
a non-zero probability of success.

When α < 1, the time conditioning might be not optimal. Critical times λa,min and
λa,max for an action a are computed by finding the moments when the probability of
success of choosing a drops exactly to α. In other words, it guarantees a probability
of success of at least α every time an action is started. However, the probability
of branching is not considered. For instance, let’s say the algorithm has to decide

49

1.4. ActuPlan : Conditional Plannner

between two actions a and b in a given state s. The algorithm generates a branching
condition “if (time ≤ λ), choose a”. Thus, the probability of success of the resulting
conditional plan π is :

P (π) = P (time ≤ λ)P (a | time ≤ λ) + P (time > λ)P (b | time > λ) (1.16)

If P (b | time > λ) > α, P (time ≤ λ) > 0 and α < 1 then P (π) > α. This means
that a lower value λ which satisfies P (π) ≥ α might exist. In the worst case, when
P (a | time ≤ λ) < α for all λ and P (b | time > λ) = 1, the action a will never be
chosen. Thus, the best estimate of a lower bound on the cost of an optimal plan is
given by simply considering πβ=0+ .

Required Approximations

Theorem 1.4.3 and Theorem 1.4.4 are true when it is possible to assume that the
distribution of random variables s.Success and s.F inalCost are perfectly defined for
every state s. Since these distributions depend on the time random variables t ∈ T ,
which must be approximated by a direct sampling inference algorithm, they cannot
be perfectly asserted. Thus in practice, the conditional planner in Algorithm 6 has
the same limitations as the nonconditional planner. Fortunately, in a similar manner
to the nonconditional planner, the error bound can be estimated and minimized by
increasing the number of samples.

The estimation of conditional expected values like E[sa.F inalCost | ta = λ] rep-
resents another difficulty. Indeed, when continuous values are used, conditions such
as ta = λ have to be replaced by ta ≈ λ. Basically, direct sampling algorithms for
Bayesian network inference select the subset of samples which match the evidences.
The value of the queried variable is then estimated by considering only this subset of
samples. Since the estimation error is in inverse proportion to the square root of the
number of samples (see Section 1.3.2), a significantly larger number of samples might
be required to get enough samples in the matching subset.

50

1.4. ActuPlan : Conditional Plannner

Considering Waiting Time in Decisions

At execution time, some decisions may be postponed and the agent may be re-
quired to wait. Even though waiting may be advantageous in a given situation, it
may still have an impact on the probability of success and on the expected total
final cost. Lines 20–21 of Algorithm 6 hide some details about the waiting process
requirements. For instance, let the current state be s. Let candidate action a ∈ s.Ǎ
be enabled at time λ. If λ < λa,min the agent is required to wait until time λa,min
because another action b might become enabled. In that case, the resulting state
Apply(s, a) is different from Apply(s,Decision(π(s))) because the first one assumes
that action a is started as soon as possible, while the second one may postpone the
action. To address this issue, it would be possible to modify the Apply function of
Algorithm 1 by changing its Line 5 to tstart ← max(tconds, trelease, λa,min).

However, this modification causes another problem. The resulting state of the
new Apply function could be a new state which has not been generated by the
nonconditional planner and has not been visited by Algorithm 6. Thus, its attached
random variables Success and FinalCost may not be available.

Algorithm 7 Simulate decision algorithm

1. SimulateDecision(s, π(s))
2. for each i ∈ {1, 2, 3, ...,m}
3. for each a ∈ s.Ǎ
4. tconds,a,i ← maxx∈vars(conds(a))ms.V(x),i
5. trelease,a,i ← maxx∈vars(effects(a))ms.R(x),i
6. tready,a,i ← max(tconds, trelease)
7. tstart,a,i ← max(tconds, trelease, λa,min)
8. Ã← {a ∈ s.Ǎ | tstart,a,i ≤ λa,max}
9. bestAction← arg mina∈Ã tstart,a,i
10. s′ ←Apply(s, bestAction)
11. if tstart,a,i ≤ λbestAction,min
12. ms.Success,i ← ms′.Success,i

13. ms.F inalCost,i ← ms′.F inalCost,i

14. else
15. M ← {j ∈ {1, 2, 3, ...,m}|tstart,a,i ≈ tready,a,j}
16. j ← randomly select j ∈M
17. ms.Success,i ← ms′.Success,j

18. ms.F inalCost,i ← ms′.F inalCost,j

This problem is solved by simulating the impacts of the decision on the Success

51

1.4. ActuPlan : Conditional Plannner

and FinalCost random variables. Lines 20–21 of Algorithm 6 are replaced by a call
to the SimulateDecision function of Algorithm 7, which works as follows. Line 2
iterates on all m independent samples generated by the Bayesian network. For each
candidate action a, Lines 3–7 compute the ready time and the start time. The ready
time is the earliest time at which an action is enabled while the start time is the
earliest time an action can be started at, according to the current plan node π(s).
Line 8 selects the subset Ã of candidate actions which assert a probability of success
of at least α. Line 9 then simulates the decision about which action to start. The
resulting state s′ is computed at Line 10. Note that this state does not consider the
potential waiting time until tstart,a,i. However, since this state has previously been
visited by Algorithm 6, its attached random variables s′.Success and s′.F inalCost

are available. If the decision does not involve waiting (Line 11), we can conclude that
the corresponding samples of s′.Success and s′.F inalCost are correct. Thus, samples
are simply copied (Lines 12–13). Otherwise, the samples cannot be copied because
samples attached to s′ are based on the assumption that the action has been started
at its ready time. In that case, all samples which are close enough to the real start
time are selected at Line 15. Then, a sample is randomly chosen (Line 16) from this
set and its success and cost values are used (Lines 17–18).

Example of Time Conditioning

Figure 1.15 shows an example of time conditioning in the state s2 of Figure 1.13
where actions a = Goto(r1, l4, l9) and b = Goto(r1, l4, l8) are possible. The curves
P (a | ta = λ) and P (b | tb = λ) represent respectively the probability of success
of choosing action a and b, i.e., E[sa.Success | ta = λ] and E[sb.Success | tb = λ].
Times λa,max and λb,max are the latest times at which actions a and b can be started.
These limits are computed by finding for which values P (a | ta = λ) and P (b | tb = λ)
drop under the given threshold on the probability of success α = 0.8.

The curves C(a | ta = λ) and C(b | tb = λ) represent respectively the expected
total final cost of choosing and starting the action a at time ta and the action b at
time tb. The time λa,min is the earliest time at which it becomes advantageous to
start action a instead of waiting for action b to become enabled, i.e., C(a | ta =
λ) ≤ C(b | λ < tb ≤ λb,max). The time λb,min is computed similarly. The action b

52

1.4. ActuPlan : Conditional Plannner

 0

 0.2

 0.4

 0.6

 0.8

 1

 400 500 600 700 800 900 1000
 1500

 1600

 1700

 1800

 1900

 2000

 2100

 2200

 2300

 2400

 2500

P
ro

b
a
b
ili

ty
 o

f
S

u
c
c
e
s
s

C
o
s
t
(i
n
 s

e
c
o
n
d
s
)

Decision Time λ

λ
a

,m
in

λ
a

,m
a

x
λ

b
,m

in

λ
b

,m
a

x

Legend
P(a|ta=λ)
C(a|ta=λ)

P(a|λ<ta<λa,max)
C(a|λ<ta<λa,max)

P(b|tb=λ)
C(b|tb=λ)

P(b|λ<tb<λb,max)
C(b|λ<tb<λb,max)

Figure 1.15: Example of time conditioning

becomes the best choice as soon as the probability of success of action a drops below α.
Consequently, the time conditioning for state s2 is π(s) = 〈(a, 425, 652)(b, 652, 971)〉.
At execution time, the first action to be enabled in its validity time interval will be
started. Figure 1.16 presents the complete generated conditional plan.

s0 s1

Goto(r0, l2, l4)
[0,0]

s2

Load(r0, l4, b1)
[384,924]

s3

Goto(r0, l4, l8)
[425,652]

s4

Goto(r0, l4, l9)
[652,971]

s5

Unload(r0, l8, b1)
[742,1042]

s7

Load(r0, l9, b0)
[751,1350]

s5 s6

Goto(r0, l8, l9)
[790,1087]

s12

Load(r0, l9, b0)
[1026,1342]

s7 s8

Goto(r0, l9, l6)
[782,1389]

s9

Unload(r0, l6, b0)
[1093,1765]

s10

Goto(r0, l6, l8)
[1130,1807]

s11

Unload(r0, l8, b1)
[1644,2472]

s13

Goto(r0, l9, l6)
[1081,1388]

s14

Unload(r0, l6, b0)
[1366,1762]

Figure 1.16: Example of conditional plan

53

1.5. Experimental Results

1.5 Experimental Results

We experimented ActuPlan planners on the Transport and the Rovers planning
domains inspired by the International Planning Competition (IPC) [27]. As presented
in Table 1.1, uncertainty has been introduced in the duration of actions. For instance,
Goto actions have a duration modelled by normal distributions. Time constraints have
also been added to goals. For instance, a package may have both a ready time at the
origin location and a deadline to be delivered at destination.

ActuPlan planners have been compared to a concurrent MDP-based planner. A
comparison with other approaches such GTD [64] was not possible 5. The experiments
were conducted on an Intel Core 2 Quad 2.4 GHz computer with 3 GB of RAM
running a 32-bit Linux Kernel version 2.6. The planners were implemented in Java
and the experiments were run under the Open JDK virtual machine. A package
containing all the source code of ActuPlan planners and the planning problems is
available online at http://planiart.usherbrooke.ca/∼eric/quanplan/.

1.5.1 Concurrent MDP-based Planner

The concurrent MDP-based planner is inspired by the work of Mausam and
Weld [47]. Their planners are based on the Labeled Real-Time Dynamic Program-
ming (LRTDP) [16] algorithm to solve a decision problem into an interwoven state-
space. The involved interwoven state-space is slightly different from the classic ap-
proach of forward-chaining for concurrency planning as in TLPlan [2]. An interwoven
state s = (X, Y) is defined by a set of assigned state variables X and a set of pairs
Y = {(a1, δ1), . . . , (an, δn)} which represent the current actions in execution. A pair
(ai, δi) ∈ Y means that the action ai is running and has been started δi units of time
ago. The set Y is similar to the queue of delayed effects in TLPlan.

This original formulation of an interwoven state does not support time constraints
since it does not contain any reference to the initial time. To enable time constrains in
the interwoven state-space, a timestamp variable t is added to the state representation.
Thus, an interwoven state is defined by s = (X, Y, t). The resulting state-space is

5. Public release of GTD is not yet available, based on information obtained from a personal
communication with the authors.

54

1.5. Experimental Results

thus significantly larger than the original formulation. The transition function is also
modified in order to increment the current time t synchronously with δi.

The concurrent MDP-based planner requires that timestamps be aligned. Hence,
in the presence of continuous action durations, values are rounded to the nearest align-
ment timestamp. The granularity of this approximation offers a trade-off between the
accuracy and the state space size, which in turn affects the planning performances.
In the reported experimentations, timestamps are aligned to 30 units of time.

1.5.2 Evaluation of ActuPlannc

Table 1.2 reports the empirical results. The first and second columns show the
size of problems, expressed in terms of the number of trucks and packages for the
Transport domain, and in terms of number rovers and data to collect for the Rovers
domain. The columns under ActuPlannc detail the number of states generated,
the number of random variables added to the Bayesian Network, the CPU time (in
seconds), the estimated expected probability of success and cost (makespan) of plans,
and the absolute estimation error under a 95 % confidence level. To estimate the belief
of a random variable of the Bayesian Network, 4096 samples are generated. We keep
arrays of samples in memory for at most 5000 random variables. The columns under
Concurrent MDP-based planner indicate the number of states, the CPU time, the
probability of success and the expected cost (makespan). A few tests failed because
they reached the allowed CPU time limit (300 seconds) or the maximum number of
states (1 and 2 millions).

These experiments validate our hypothesis that the overhead of managing random
variables is largely compensated by the state space reduction induced. Our approach
efficiently avoids the state space explosion caused by the discrete model of time. All
solved problems by ActuPlannc have a probability of success close to 1.0. For the
concurrent MDP planner, the probability of success is estimated after the generation
of a policy. Since RTDP is an anytime algorithm, the returned policy may have a
probability lower than 1.0 when the maximum planning time is reached.

55

1.5. Experimental Results

Table 1.2: Empirical results for Transport and Rovers domains
Transport ActuPlannc Concurrent MDP-based Planner
|R| |G| |Sexp| |BN | CPU P Cost ε |Sexp| CPU P Cost
1 1 6 11 0.3 1.0 715.5 1.4 251 0.0 1.0 715.3
1 2 13 22 0.3 1.0 763.9 1.4 28,837 0.4 1.0 771.9
1 3 32 57 0.3 1.0 1112.1 1.7 1,275,836 32.5 1.0 1124.3
1 4 78 131 0.3 1.0 1604.6 2.0 2,000,174 57.2 0.0 -
2 2 47 56 0.3 1.0 719.2 1.3 953,216 36.2 1.0 719.3
2 3 113 107 0.2 1.0 1013.4 1.5 2,000,399 62.3 0.0 -
2 6 9,859 3,982 5.6 1.0 1084.4 1.4 2,000,821 58.5 0.0 -
2 7 181,740 55,752 132.4 1.0 1338.8 1.8 2,000,975 63.3 0.0 -
2 8 397,370 103,879 264.0 1.0 1339.0 1.8 2,001,088 65.4 0.0 -
3 1 57 46 0.3 1.0 715.9 1.4 554,841 114.2 1.0 697.5
3 4 5,951 2,173 2.5 1.0 980.5 1.8 2,000,633 92.3 0.0 -
3 5 24,194 7,602 9.2 1.0 983.7 1.9 2,000,597 76.3 0.0 -
3 6 90,958 21,938 37.2 1.0 983.0 1.9 2,000,511 82.9 0.0 -
3 7 564,761 80,763 300.0 - 2,001,032 97.6 0.0 -
4 1 267 121 0.2 1.0 717.8 1.3 2,000,038 147.9 0.1 3623.3
4 4 78,775 15,595 32.8 1.0 985.0 1.8 2,000,636 98.5 0.0 -
4 5 474,995 71,367 209.8 1.0 985.8 1.7 2,000,871 110.2 0.0 -
4 6 785,633 96,479 300.0 - 2,000,690 120.4 0.0 -
4 7 803,080 83,077 300.0 - 2,001,063 108.6 0.0 -
4 8 1,000,063 73,181 262.1 - 2,001,237 110.8 0.0 -
Rovers ActuPlannc Concurrent MDP-based Planner
|R| |G| |Sexp| |BN | CPU P Cost ε |Sexp| CPU P Cost
1 2 50 49 0.073 1.0 1,653 2.1 18,297 3.42 1.0 1,653
1 3 109 80 0.111 1.0 1,966 2.2 142,835 50.3 1.0 1,966
1 4 330 154 0.300 1.0 2,666 2.4 51,765 239 0.1 2,666
1 5 406 156 0.353 1.0 2,892 2.7 - - - -
2 4 6,018 431 1.55 1.0 1,963 2.2 341,937 186 1.0 2,013
2 6 12,445 423 9.72 1.0 2,515 2.4 - - - -
2 8 85,830 1,312 224 1.0 4,571 4.7 - - - -

Impact of the Number of Samples

The necessary use of an inference algorithm to evaluate random variables in the
Bayesian network imposes a computational overhead. Direct sampling algorithms
have aO(nm) runtime where n is the number of random variables andm is the number
of samples. A higher number of generated samples produces a lower estimation error
on the belief of random variables. Figure 1.17 presents the planning time and the
estimation error of the plans’ cost with respect to the number of samples, for two
Transport problems of different size. The planning time grows linearly with the
number of samples while the estimation error is in inverse proportion to the square
root of the number of samples. For large problems, 4000 to 5000 samples represent a
good trade-off between planning speed and the estimation error.

56

1.5. Experimental Results

 0

 2

 4

 6

 8

 10

 12

 0 5000 10000 15000 20000
 0

 4

 8

 12

P
la

n
n
in

g
 T

im
e
 (

s
)

E
x
p
e
c
te

d
 C

o
s
t
E

s
ti
m

a
ti
o
n
 E

rr
o
r

Number of samples

Planning Time
Estimation Error

(a) Small Transport Problem

 0

 250

 500

 750

 1000

 0 5000 10000 15000 20000
 0

 2.5

 5

 7.5

 10

P
la

n
n
in

g
 T

im
e
 (

s
)

E
x
p
e
c
te

d
 C

o
s
t
E

s
ti
m

a
ti
o
n
 E

rr
o
r

Number of samples

Planning Time
Estimation Error

(b) Large Transport Problem

Figure 1.17: Impact of number of samples

Impact of the Size of Samples Cache

Figure 1.18 presents the impact on planning time induced by a variation on the
number of random variables for which the arrays of samples are cached. The advan-
tages of this strategy tend to wear off as the size of the cache increases. For large
problems, a few thousand cached random variables offer a good trade-off between
memory usage and planning time.

1.5.3 Evaluation of ActuPlan

Table 1.3 presents results for both the nonconditional and the conditional planners.
The nonconditional planner was run with α = 0.9. The conditional planner was run
with α = 0.9 and β = 0.4. These planners are compared to the Concurrent MDP
planner. The first and second columns show the size of the problems, expressed in
terms of the number of trucks and packages for the Transport domain. Columns under
each planner report the CPU time, the probability of success and the cost (makespan).
Results show that the conditional planner reduced the expected makespan for most of
the problems, when it is possible. For few problems, there does not exist conditional
plan which is strictly better than the nonconditional one.

Generated conditional plans are generally better plans but require much more

57

1.5. Experimental Results

 0

 1

 2

 3

 4

 0 1000 2000 3000 4000 5000
 2

 3

 4

P
la

n
n
in

g
 T

im
e
 (

s
)

N
u
m

b
e
r

o
f
E

v
a
lu

a
ti
o
n
s
 (

0
0
0
)

Number of Random Variables in Cache

Planning Time (s)
Number of Evaluations

Number of Variables

(a) Small Transport Problem

 150

 200

 250

 0 1000 2000 3000 4000 5000
 100

 200

 300

P
la

n
n
in

g
 T

im
e
 (

s
)

N
u
m

b
e
r

o
f
E

v
a
lu

a
ti
o
n
s
 (

0
0
0
)

Number of Random Variables in Cache

Planning Time (s)
Number of Evaluations

Number of Variables

(b) Large Transport Problem

Figure 1.18: Impact of cache size

Table 1.3: Empirical results for the ActuPlan on the Transport domain
Size ActuPlannc ActuPlan MDP Planner
|R| |G| CPU P Cost CPU P Cost CPU P Cost

1 2 0.3 1.00 2105.5 0.3 0.96 1994.5 44.9 0.99 1992.4
1 3 0.3 1.00 2157.3 0.6 0.93 1937.9 214.5 0.00 -
1 4 0.3 0.98 2428.0 0.5 0.98 2426.2 192.6 0.00 -
2 2 0.2 1.00 1174.0 0.4 1.00 1179.2 302.3 0.00 -
2 3 0.3 1.00 1798.3 1.8 0.93 1615.2 288.3 0.00 -
2 4 0.3 1.00 1800.0 4.2 0.91 1500.5 282.8 0.00 -
3 6 4.1 0.97 1460.1 300 0.97 1464.5 307.9 0.00 -

CPU time than ActuPlannc. This time is required because an optimal conditional
plan may require the combination of many plans, which requires to explore a much
larger part of the state space. In practice, the choice between ActuPlannc and
ActuPlan should be guided by the potential benefit of having smaller costs. There
is a trade-off between plans quality and required time to generate them. When a small
improvement on the cost of plans has a significant consequence, then ActuPlan
should be used. If decisions have to be taken rapidly, then ActuPlannc is more
appropriate.

58

1.6. Related Works

1.6 Related Works

Generating plans with actions concurrency under time uncertainty has been recog-
nized as a challenging problem [17]. Even though this particular kind of problem has
gained interest over the last decade, little work has been done in the field. Moreover,
contributions addressing the problem are often based on different sets of assumptions
and are thus difficult to compare. To provide a better overview and to better position
the contribution of each approach, Figure 1.19 presents a classification of planning
problems related to concurrency and uncertainty. ActuPlan which is presented in
this paper is highlighted with a yellow star. Here, in this classification, a distinction is
made between two types of uncertainty: the uncertainty on the outcomes of actions,
and the numerical uncertainty.

Fully Nondeterministic (Outcome and Duration) + Action Concurrency

FPG [18]

+ Deterministic Outcomes
GTD [64]
ActuPlan [9]

+ Sequantial (no action concurrency)

+ Deterministic Action Duration
+ Discrete Action Duration Uncertainty
DUR [46]

+ Longest Action
CoMDP [45]

TLPlan [2]

MDP [12]

Classical Planning
A* + PDDL Stripts

[26]

DUR (approximation) [46]

DUR (approximation) [46]

Figure 1.19: Classification of planning problems with actions concurrency and uncer-
tainty

Generally, the more assumptions are made on planning domains, the simpler it is
to solve problem instances. For that reason, the classical planning class was the first
one to be addressed by the planning community. This very constrained class results
from making several assumptions including: (1) the outcomes of actions are deter-

59

1.6. Related Works

ministic, (2) actions have unit duration (time implicit), and (3) generated plans are
sequential (no concurrency). Forward state-based search such as A* and STRIPS [29]
are examples of planning algorithms targeting planning domains of that class.

Since this era, a lot of work has been done to progressively relax these assumptions
in order to solve more realistic planning problems. The long term goal is to develop
a general planner for solving planning problems with any characteristic. Those plan-
ning problems are represented by the largest class in Figure 1.19. It contains all
planning domains that are fully nondeterministic and allow action concurrency. Full
nondeterminism stands for general uncertainty. This class is very general and is
rarely addressed directly because problems of this class are very complex. FPG [18]
is a planner able to address this kind of problems. It is based on policy-gradient
methods borrowed from reinforcement learning [61]. To reduce computation efforts
for solving an MDP, policy-gradient methods introduce an approximation function
to estimate the states’ value during policy generation. Gradients are evaluated using
Monte Carlo simulations. To enable concurrency, FPG generates a global factorized
policy composed by local policies, each one controlling a specific action.

Most of the existing planning methods cannot address the general class and re-
quire more assumptions. In Figure 1.19, each sub-class adds a constraint (planning
assumption) on allowed planning domains. On the right, the assumption that actions
outcomes are deterministic is added, but actions durations remain uncertain. This
class is addressed by the Generate, Test and Debug paradigm (GTD) [64]. The inser-
tion points can be randomly chosen [64] or selected using planning graph analysis [26].

On the bottom, an extra constraint is discrete uncertainty. This requires having
actions with a finite number of outcomes and a finite number of durations. For in-
stance, an action could have a duration of either 50, 60 or 70 units of time. CPTP [46]
can solve these domains. It is possible to simplify the problem by adding another
constraint that fixes the duration of a combined action to the duration of the longest
sub-action. The resulting class is the one corresponding to CoMDP [45], the predeces-
sor of CPTP. There exist other MDP-based approaches including Prottle [43], which
is based Labeled Real-Time Dynamic Programming (LRTDP) [16], and GSMDP [56].

60

1.7. Conclusion and Future Work

1.7 Conclusion and Future Work

This paper presented ActuPlan, which is based a new approach for planning
under time and resources constraints and uncertainty. The main contribution is a
new state representation which is based on a continuous model of time and resources.
Continuous random variables are used to model the uncertainty on the time and
resources. Time random variables define the start and end times of actions, as well
as their duration. The belief of numerical resources is also modelled using random
variables. Since a continuous model is more compact than discrete representations,
it helps avoid the state space explosion problem.

The random variables are organized into a Bayesian network, a well-established
framework in AI to reason about uncertainty. Relying on a Bayesian network offers
several advantages. For instance, it offers great flexibility for the possible assump-
tions about the dependence (or independence) of the random variables related to the
duration of actions and to the consumption of resources. This kind of flexibility is
sometimes required in real-world applications.

A direct sampling algorithm is used to estimate the probability of success and
the expected total cost of plans. We showed that the generated nonconditional plans
can be merged to build a conditional plan which produces shorter makespan without
sacrificing the probability of success of the merged plans. The test conditions on the
branches of the plans are computed through an analysis of the distribution of time
random variables.

Two planning algorithms have been presented. The nonconditional algorithm
(ActuPlannc) produces ε-optimal nonconditional plans by performing a forward-
search in the state space. A minimum final cost heuristic is used to guide the forward-
search. The ε error can be minimized by increasing the number of samples in the
Bayesian network. A time conditional planning algorithm (ActuPlan) generates
ε-optimal or sub-optimal conditional plans. The conditional plans are obtained by
merging several nonconditional plans having different trade-offs between their quality
and probability of success. The execution of these plans is guided by conditioning
the current time. Depending on the duration of previous actions, the plan chooses
the appropriate branches. Empirical results showed the efficiency of our approach on

61

1.7. Conclusion and Future Work

planning domains having uncertainty on the duration of actions.
The presented approach focuses on numerical uncertainty, i.e., the duration of

actions and the consumption of resources, such as energy. We plan to extend our
approach to a larger definition of uncertainty including also the uncertainty on the
outcomes of actions. The resulting planning algorithm will be a hybrid solution which
combines two well established frameworks in AI to deal with uncertainty: an MDP
could be used to address this form of uncertainty while numerical uncertainty would
be addressed by a Bayesian network.

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council
of Canada (NSERC) and the Fonds québécois de la recherche sur la nature et les
technologies (FQRNT).

62

Chapitre 2

QuanPlan : un planificateur dans
un espace d’états quantiques

Résumé
Cet article présente QuanPlan, un planificateur hybride pour la planifi-

cation d’actions concurrentes sous incertitude générale. Pour résoudre le défi
de la concurrence sous incertitude, QuanPlan effectue une recherche dans un
espace d’états quantiques. La notion d’état quantique est inspirée de la phy-
sique quantique. Un état quantique est une superposition d’états qui permet
de modéliser les effets indéterminés des actions. Une nette distinction est faite
entre deux formes d’incertitude, soit (1) celle sur le temps (durée des actions)
et (2) celle sur les effets des actions. Une approche hybride est présentée. L’in-
certitude sur la durée des actions est prise en charge par un réseau bayésien
construit dynamiquement, tel que présenté au chapitre 1. L’incertitude sur les
effets, autres que la durée des actions, est prise en charge par un processus
décisionnel markovien (MDP). Le calcul des valeurs des états nécessite des re-
quêtes au réseau bayésien. Le planificateur hybride est validé sur les domaines
du Transport et des Rovers.

63

Commentaires
L’article sera soumis au journal Artificial Intelligence (AIJ). Une version

plus courte a été soumise à la vingt-cinquième conférence de l’Association for
the Advance of Artificial Intelligence (AAAI-2011). Le planificateur présenté,
QuanPlan, est une généralisation de l’approche présentée dans le premier
chapitre. En plus de générer l’incertitude au niveau de la durée des actions,
QuanPlan prend également en charge l’incertitude liée aux effets (outcomes)
des actions. L’article a été rédigé par Éric Beaudry sous la supervision de
Froduald Kabanza et François Michaud.

64

QuanPlan : A Quantum State-Space Planner for
Concurrent Actions under Time and Outcome

Uncertainty

Éric Beaudry, Froduald Kabanza
Département d’informatique, Université de Sherbrooke,

Sherbrooke, Québec, Canada J1K 2R1
eric.beaudry@usherbrooke.ca, froduald.kabanza@usherbrooke.ca

François Michaud
Département de génie électrique et de génie informatique,

Université de Sherbrooke,
Sherbrooke, Québec, Canada J1K 2R1

francois.michaud@usherbrooke.ca

Abstract

This paper presents QuanPlan, a hybrid planner for planning concurrent
actions under uncertainty and time constraints. QuanPlan performs a
search in a quantum state space where a quantum state is a superposition
of states. Quantum states are used to model the fact that the outcomes
of actions are undetermined until their end. A superposition of states is
determined (collapsed) when it is observed. Two forms of uncertainty are
considered: on the duration of actions and on the outcomes of actions. A
continuous model is adopted for the duration of actions. The time of events,
corresponding to the start time and the end time of actions, and the duration
of actions are represented by continuous random variables. Dependencies are
modelled using a dynamically generated Bayesian network. The uncertainty
on the outcomes of actions is handled by using a Markov Decision Process.
This combination of Bayesian network and Markov Decision Process results
in an efficient planner as empirical evaluations on the Transport and the
Rovers domains demonstrate.

65

2.1. Introduction

2.1 Introduction

Planning concurrent actions under uncertainty has been recognized as a challeng-
ing problem in AI [17]. This kind of problems is motivated by several real-world
applications, such as robotics. For example, the task planning for Mars rovers is an
application involving concurrency and uncertainty [17]. A Mars rover has to go to
several locations to collect data using specialized sensors. While navigating (which is
a task with a probabilistic duration), the rover may perform other tasks like warming
up and initializing its sensors, and transmitting the collected data to the base station.
Task planning for Mars rovers must account for uncertainty in order to maximize their
efficiency, because it is a key aspect of most actions they can perform.

Combining actions concurrency under a general form of uncertainty represents a
challenge for planners based on state space exploration. This challenge is particu-
larly present in the state transition function because the actual outcome of an action
is only determined at its end. A naïve and approximate approach for implement-
ing actions concurrency under uncertainty would be to implement a state transition
function which generates a set of determined states. For instance, the application of
a nondeterministic action a from state s would produce the set of successor states
Sa = {s1, . . . , sn}. When concurrency is involved, a state does not necessary have a
unique time; it depends on how concurrency is handled. In TLPlan [2] for example,
the concurrency is handled by a pending queue of delayed effects. When an action is
applied, the current time variable is not increased; the at end effects are posted in a
queue. In timeline-based planners [9, 52], each state variable is attached to a partic-
ular time variable. Thus, being in a resulting state s′ ∈ Sa gives information about
the actual outcome of action a. From state s′, starting another action b at the same
time as action a is a form of “cheating” because the decision to start b is implicitly
made under the assumption that the outcome of a is already known. However, since
action a is running in state s′, its outcome cannot be determined. Consequently, a
state-based planner has to deal with a form of undetermined states.

Markov Decision Processes (MDPs) [12] provide a rich and general framework for
artificial intelligence (AI) to solve stochastic problems. In its original formulation, an
MDP is well-suited for sequential decision-making under uncertainty where exactly

66

2.1. Introduction

one action (decision) is selected in each state. This framework has been extended
to solve problems involving concurrent actions with probabilistic durations and non-
deterministic outcomes [47]. This approach adopts an interwoven state space and
relies on a single and general model to represent all forms of uncertainty. Indeed,
the uncertainty on the duration of actions and on the nondeterministic outcomes are
represented as state transitions. Concurrency is handled in a similar fashion to de-
layed effects in TLPlan [2]. Basically, an interwoven state is the cross product of a
classical state and a set of executing actions. Formally, an interwoven state is defined
by s≡ = (X,∆), where X is a set of state variables and ∆ = {(a1, δ1) , . . . , (a1, δ1)}
contains the current actions in execution. A pair (a, δ) ∈ ∆ means that action a has
been started δ units of time ago. A complex state transition probability function ad-
vances the δ time for all running actions at the same time. However, using a discrete
representation of time exacerbates the state-space explosion problem.

Simulation-based planning approaches represent an interesting alternative to pro-
duce sub-optimal plans. One of them is the Generate, Test and Debug (GTD)
paradigm [64], which is based on the integration of a deterministic planner and a
plan simulator. In this approach, an initial plan is generated without taking un-
certainty into account, and is then simulated using a probabilistic model to identify
potential failure points. The plan is incrementally improved by successively adding
contingencies to it in order to address uncertainty. The Factored Policy Gradient
(FPG) [18] is another planning approach based on policy-gradient methods borrowed
from reinforcement learning [61]. However, the scalability of these approaches is lim-
ited.

Another approach, which rather relies on a continuous time model, has been pro-
posed to deal with action concurrency under uncertainty on the duration of actions [9]
and on numerical effects [10]. The occurrence time of events, which corresponds to
the start and end time of actions, and the duration of actions are represented using
continuous random variables. The planning algorithm performs a forward-search in
a state space where state variables are associated to time random variables. The use
of time random variables reduces the size of the state space compared to approaches
using a discrete time model. The relationship between these random variables is ex-
pressed using a Bayesian network dynamically generated during the search. Queries

67

2.1. Introduction

are made to the Bayesian network to (1) evaluate the probability that the goal is
achieved in a given state of the space explored so far, and to (2) estimate the ex-
pected cost (e.g., makespan) of a plan. The planner produces nonconditional plans
which minimize the expected cost and assert a probability of success of at least a
fixed threshold. However, this approach deals with only one form of uncertainty, i.e.,
on the time and on numerical resources.

This paper presents QuanPlan, a hybrid planner for planning with actions con-
currency under uncertainty. QuanPlan is based on two well established probabilistic
frameworks in AI, Bayesian networks and MDPs. These frameworks are used to ad-
dress respectively two forms of uncertainty: (1) the duration of actions, and (2) the
outcomes of actions. This distinction is justified by the fact that in real-world applica-
tions, the time is generally continuous while nondeterministic outcomes are generally
discrete. The uncertainty on the occurrence of events, i.e., the start and end time of
actions, is modelled using continuous random variables [9]. These continuous random
variables, which will be named time random variables in the rest of the paper, are
organized in a dynamically-generated Bayesian network. A direct sampling inference
algorithm is used to estimate the distribution of time random variables.

To address the challenge of concurrency under uncertainty, QuanPlan performs
a search in a quantum state space. Basically, a quantum state is a superposition of
states. Quantum states, i.e., superpositions of states, are required because the actual
outcomes of actions are only determined when they end. As in quantum physics, a
superposition of states is determined (collapsed) when it is observed. The uncertainty
on the nondeterministic outcomes of actions is addressed by an MDP. Nondetermin-
istic actions are modelled by deterministic transitions in a quantum state space. The
observation of state variables related to uncertain outcomes cause nondeterministic
transitions in the quantum state space.

The rest of the paper is organized as follows. Section 2.2 presents the required basic
concepts, and determined and quantum states. Section 2.3 presents the QuanPlan
planning approach. Finally, empirical results are reported in Section 2.4 before con-
cluding the paper.

68

2.2. Basic Concepts

2.2 Basic Concepts

Basic concepts are illustrated using the Mars Rovers domain, which is a bench-
mark domain 1 from the International Planning Competition of the International
Conference on Automated Planning and Scheduling. Simplifications are made to
keep the illustrations simple. In that domain, a set of rovers have to gather data
from different locations, using a specialized sensor, and transmit the results to a base
station using a wireless channel. Figure 2.1 shows a sample map where two robots
have to acquire data from locations on a star.

l10

l1 l2 l3

l4

l5

l6

l7

l8
l9

r1 r2

Base

Figure 2.1: Example of a map to explore

1. http://planning.cis.strath.ac.uk/competition/domains.html

69

2.2. Basic Concepts

2.2.1 State Variables

World states are modelled using a set of discrete state variables X = {x1, . . . , xn}.
A state variable x ∈ X has a finite domain Dom(x). The Rovers planning do-
main involves a set of n rovers R = {r1, . . . , rn} and a map of k locations L =
{l1, . . . , lk}. A state in that domain is modelled using the set of state variables
X = {Cr, Ir, Dr,l, Bl,W | r ∈ R, l ∈ L}, where:

– Cr ∈ L specifies the current location of rover r ∈ R;
– Ir is a Boolean variable which indicates whether the sensor of rover r is initial-
ized;

– Dr,l is a Boolean variable which specifies if the rover r has acquired data from
location l;

– Bl is a Boolean variable which indicates whether the base station has received
the data of location l; and

– W is a Boolean variable which indicates if the wireless channel is available.

2.2.2 Time Uncertainty

A time random variable t ∈ T marks the occurrence of an event, corresponding to
either the start or the end of an action. The time random variable t0 ∈ T is reserved
for the initial time. Each action a has a duration represented by a random variable
da. A time random variable t ∈ T is defined by an equation specifying the time at
which the associated event occurs.

t0 = 0.0

t2 = t0+dGoto(r1,l1,l3)

dGoto(r1,l1,l3) ~N(400.0,80.0)

Figure 2.2: Example of a Bayesian network to model time uncertainty

The time random variables are organized in a Bayesian network. For instance, the
duration of the Goto(r1, l1, l3) action in the Rovers domain can be modelled using a
continuous random variable dGoto(r1,l1,l3) following a normal distribution. Figure 2.2

70

2.2. Basic Concepts

illustrates a sample Bayesian network representing the end time t2 which corresponds
to the end of a the Goto(r1, l1, l3) started at time t0. As explained in Section 2.2.5,
the duration of the Goto action follows a normal distribution having two parameters:
a mean µ and a standard deviation σ.

2.2.3 Determined States

Planning with action concurrency requires dealing with undetermined states be-
cause the actual outcomes of actions cannot be known before their end. Before
introducing undetermined states, the notion of a determined state is defined 2. Basi-
cally, a determined state is a set of assigned state variables which are associated to
time random variables [9]. Formally, a determined state s is defined by s = (U ,V ,R)
where:

– U is a total mapping function U : X → ∪x∈XDom(x) which retrieves the current
assigned value for each state variable x ∈ X such that U(x) ∈ Dom(x);

– V is a total mapping function V : X → T which denotes the valid time at which
the assignation of variables X have become effective; and

– R is a total mapping function R : X → T which indicates the release time on
state variables X.

The release times of state variables track conditions of actions that must be main-
tained over all the duration of the actions. The time random variable t = R(x) means
that a change of the state variable x cannot be initiated before time t. Valid time (V)
and the release time (R) are similar to the write-time and the read-time in Multiple-
Timelines of SHOP2’s [52], except that we are dealing with random variables instead
of numerical values.

Figure 2.3 illustrates an example of two determined states. Because space is
limited, only relevant state variables are shown. State s1 represents two rovers r1 and
r2 located at locations l1 and l2. The sensors of both rovers are initialized (T stands
for true) but at different times t1 and t0. No data has been acquired or transmitted
yet (F stands for false). State s2 is explained in Section 2.2.6.

2. The definition of determined states is based on the definition of states of ActuPlan as pre-
sented in Section 1.2.3

71

2.2. Basic Concepts

l3

l1 l2 l4

l5

l6l7
l8

r1 r2
Base

s1

x

Cr1

Cr2

Ir1

Ir2

Dr1 ,l3

Dr2 ,l2

Bl2

U(x)

l1

l2

T

T

F

F

F

V(x)

t0

t0

t1

t0

t0

t0

t0

R(x)

t0

t0

t1

t0

t0

t0

t0

Goto (r1 ,l1 ,l3)

...

s2

x

Cr1

Cr2

Ir1

Ir2

Dr1 ,l3

Dr2 ,l2

Bl2

U(x)

l3

l2

T

T

F

F

F

V(x)

t2

t0

t1

t0

t0

t0

t0

R(x)

t2

t0

t1

t0

t0

t0

t0

...

l3

l1 l2 l4

l5

l6l7
l8

r1
r2

Base

Figure 2.3: Example of determined states

2.2.4 Actions

The specification of actions follows the extensions introduced in PDDL 2.1 [31]
for expressing temporal planning domains. The set of all actions is denoted by A.
Roughly, an action a ∈ A is a tuple a = (name, cstart, coverall, estart, O, ca, da),
where:

– name is the name of the action;
– cstart is the set of at start conditions that must be satisfied at the beginning
of the action;

– coverall is the set of persistence conditions that must be satisfied over all the
duration of the action;

– estart is respectively the sets of at start effects on the state variables;
– O is a set of all possible outcomes occurring at the end of the action;
– and ca ∈ C is the random variable which models the cost of the action;
– and da ∈ D is the random variable which models the duration of the action.

72

2.2. Basic Concepts

A condition c is a Boolean expression over state variables. The function vars(c)→
2X returns the set of all state variables that are referenced by the condition c. An
object effect e = (x, exp) specifies the assignation of the value resulting from the
evaluation of expression exp on the state variable x. Expression conds(a) returns all
conditions of action a.

An outcome o ∈ O is a tuple o = (p, eend) where p is the probability that the
action has o as outcome, eend are at end effects. An effect e = (x, exp) specifies
the assignation of the value resulting from the evaluation of expression exp to the
state variable x. The set of outcomes O is composed of mutual exclusive outcomes.
The sum of the probability of all outcomes of an action must be equals to 1. The
expression effects(o) returns all effects of outcome o and effects(a) returns all effects
of all outcomes of action a.

To simplify the explanations provided in this paper, the duration is associated
to the action itself. This model can be easily generalized by associating a specific
random variable for each particular outcome of each action.

An action a is applicable in a state s if and only if s satisfies all at start and over
all conditions of a. A condition c ∈ conds(a) is satisfied in state s if c is satisfied by
the current assigned values of state variables of s.

The application of an action to a determined state updates the functions U ,V ,R [9].
Following the AI planning PDDL action specification language, actions have at start
conditions enforcing preconditions at the start of an action. An action starts as soon
as all its at start conditions are satisfied.

2.2.5 Actions in the Mars Rovers Domain

The specification of actions for the simplified Mars Rovers domain is given in
Table 2.1. The action Goto(r, la, lb) describes the movement of the rover r from
location la to location lb. The duration of a Goto action is modelled by a normal
distribution where both the mean and the standard deviation are proportional to the
distance to travel. The action AcquireData(r, l) represents the acquisition of data by
the rover r in location l using its specialized sensor. Before each data acquisition, the
sensor has to be initialized. The action AcquireData is nondeterministic and has two

73

2.2. Basic Concepts

Table 2.1: Actions specification for the Rovers domain
Goto(r ∈ R, a ∈ L, b ∈ B)
cstart Cr = a
eend Cr = b
duration Normal(distance(a, b)/speed, 0.2 ∗ distance(a, b)/speed)

AcquireData(r ∈ R, l ∈ L)
coverall Ir = true
coverall Cc = l
eend Ir = false
eend Dr,l = [0.7]true or [0.3]false
duration Uniform(30, 60)

InitSensor(r ∈ R)
cstart Ii = false
eend Ir = true
duration Uniform(30, 60)

TransmitData(r ∈ R, l ∈ L)
cstart Dr,l = true
cstart w = false
estart w = true
eend w = false
eend Bl = false
duration Normal(400, 100)

possible outcomes: it may succeed with a probability of 0.7 or fail with a probability
of 0.3. To simplify the notation, only the nondeterministic effect is specified with
probabilities. The initialization of the sensor of a rover r is carried out by the action
InitSensor(r). Once data is acquired, it has to be transmitted to the base station
using a wireless link. The action TransmitData(r, l) corresponds to the transmission
of data acquired from location l by the rover r to the base station. The wireless link
has a limited capacity; only one rover can send data at any given time. A rover may
transmit data while it is navigating, initializing its sensor or acquiring new data. It
is assumed that rovers have an unlimited capacity of storage.

74

2.2. Basic Concepts

Algorithm 8 Apply action function

1. function Apply(s, a)
2. s′ ← s
3. tconds ← maxx∈vars(conds(a)) s.V(x)
4. trelease ← maxx∈vars(effects(a)) s.R(x)
5. tstart ← max(tconds, trelease)
6. tend ← tstart + da
7. for each c ∈ a.coverall
8. for each x ∈ vars(c)
9. s′.R(x)← max(s′.R(x), tend)
10. for each e ∈ a.estart
11. s′.U(e.x)← eval(e.exp)
12. s′.V(e.x)← tstart
13. s′.R(e.x)← tstart
14. for each e ∈ a.eend
15. s′.U(e.x)← eval(e.exp)
16. s′.V(e.x)← tend
17. s′.R(e.x)← tend
18. for each e ∈ a.enum
19. s′.W(e.y)← eval(e.exp)
20. returns s′

2.2.6 State Transition

The application of a deterministic action in a state causes a state transition 3.
Algorithm 8 describes the Apply function which computes the determined state
resulting from application of an action a to a determined state s. Time random
variables are added to the Bayesian network when new states are generated. The
start time of an action is defined as the earliest time at which its requirements are
satisfied in the current state. Line 3 calculates the time tconds which is the earliest time
at which all at start and over all conditions are satisfied. This time corresponds to
the maximum of all time random variables associated to the state variables referenced
in the action’s conditions. Line 4 calculates time trelease which is the earliest time
at which all persistence conditions are released on all state variables modified by an
effect. Then at Line 5, the time random variable tstart is generated. Its defining
equation is the max of all time random variables collected in Lines 3–4. Line 6
generates the time random variable tend with the equation tend = tstart + da. Once

3. In this thesis, Section 2.2.6 is adapted from Section 1.2.6. Algorithms 1 and 8 are identical.

75

2.2. Basic Concepts

generated, the time random variables tstart and tend are added to the Bayesian network
if they do not already exist. Lines 7–9 set the release time to tend for each state variable
involved in an over all condition. Lines 10–17 process at start and at end effects.
For each effect on a state variable, they assign this state variable a new value, set the
valid and release times to tstart and add tend. Line 18–19 process numerical effects.

Figure 2.3 illustrates the result (State s2) of applying Goto(r1, l1, l3) action to s1.
Because Cr1 = l1 is the condition for starting the action, its start time is the release
time R(Cr1) = t0. The action finishes at time t2 = t0 + dGoto(r1,l1,l3). Accordingly, the
valid (V) and release (R) times of the state variable Cr1 are set to t2.

2.2.7 Quantum States

To plan concurrent actions under uncertainty, a planner has to make decisions
(starting actions) even when the outcomes of other running actions are still unde-
termined. In order to efficiently model such decisions, planning quantum states are
introduced. The terminology of planning quantum state is a inspired from quantum
physic theory where a quantum state is a superposition of classical states. Roughly,
in our approach, the start of an action generates a quantum state which is the super-
position of all possible future determined states.

A planning quantum state is reminiscent of a belief state as generally understood
in uncertainty reasoning. A belief state generally represents uncertainty (of an agent)
about the current world state which is partially observable. However, even when the
current state is unknown, it is always completely determined in the reality. In the
presence of concurrency and uncertainty, the current state can be really undetermined
because some nondeterministic actions might still running. Thus, a part the current
state cannot be observed, not because sensors are imperfect, but the future cannot
be observed. In our approach, states are reputed to be undetermined until they need
to be observed. Indeed, a real superposition of future possible states is assumed.

Given that a quantum state may contain determined and undetermined state vari-
ables, the notion of a partial state is required. A partial state is a partial assignment
of state variables; that is, it assigns values to a subset X̆ ⊆ X of the state variables.
Formally, a determined partial state is defined as s̆X̆ = (Ŭ , V̆ , R̆), where Ŭ , V̆ and R̆

76

2.2. Basic Concepts

have the same meaning as U , V and R in the definition of a determined state (see
Section 2.2.3), except that they are partial mapping functions on a nonempty subset
of the state variables X̆ ⊆ X.

A superposition of determined partial states sX̆ is a set of determined partial states
where each partial state s̆X̆ ∈ sX̆ is defined on the same set of state variables X̆ ⊆ X.
The line over s denotes a superposition of determined partial states. In a superposition
of determined partial states sX̆ , each partial state s̆X̆ has a probability of P (s̆X̆ |sX̆)
to be observed.

A quantum state is a set of superpositions of determined partial states. Formally,
a quantum state q is defined by q =

{
sX̆1

, . . . , sX̆n
| ∪iX̆i = X ∧ X̆i ∩ X̆j = ∅, i 6= j

}
.

The subsets X̆i constitute a partition of X. The superpositions composing a quantum
state are always independent to each other. The set of the quantum state space is
denoted by Q.

A superposition of determined partial states s is completely determined when
|s| = 1, i.e. the superposition contains exactly one determined partial state. A
state variable x ∈ X̆ is completely determined when its corresponding superposition
of partial states sX̆ is also completely determined. A quantum state is completely
determined when all its superpositions of partial states are completely determined.
When a quantum state q is completely determined, it can be projected on a completely
determined state s ∈ S.

Figure 2.4 presents two examples of quantum states. The quantum state q2 is
defined by the state s2 of Figure 2.3 where both rovers has their sensor initialized.
The quantum state q3 is obtained by applying the action AcquireData(r1, l3) from
q2. Given that Cr1 = l3 and Ir1 = T are conditions, the action start time t3 is
defined by the maximum of involved valid times, i.e. t3 = max(t1, t2) The end time
is t4 = t3 + dAcquireData(r1,l3). The resulting quantum state q3 is a composition of two
superpositions of partial states. The first, s3,0, is completely determined and contains
the unchanged state variables. Because the action has a probabilistic outcome, the
second superposition s3,1 is composed of two determined partial states. The first line
of a superposition shows the probability of each partial state to be observed. In the
first column of a superposition, state variables x and their valid and release times are
formatted with a compact syntax x@V(x)/R(x). The remaining columns present the

77

2.2. Basic Concepts

values of U(x) corresponding to each superposed partial state. Since Cr1 = l3 must
be maintained over all the duration of the action, its release time R(Cr1) is set to the
ending time t4. The superposition of partial states s3,1 represents the two possible
outcomes on the Dr1,l1 state variable. Similarly, the quantum state q4 is obtained by
applying the action AcquireData(r2, l2) and contains three superpositions of partial
states.

q3
s3,0

P

Cr1 @t2/t4
Cr2 @t0/t0
Ir2@t0/t0
Dr2,l2@t0/t0
...

1.0

l3
l2
T

F

...

s3,1

P

Ir1 @t4/t4
Dr1,l3 @t4/t4

0.3

F

F

0.7

F

T

AcquireData
(r1 ,l3)
1.0

q4
s4,0

P

Cr1 @t2/t4
Cr2@t0/t5
...

1.0

l3
l2
...

s4,1

P

Ir1 @t4/t4
Dr1,l3 @t4/t4

0.3

F

F

0.7

F

T

s4,2

P

Ir2 @t5/t5
Dr2,l2 @t5/t5

0.3

F

F

0.7

F

T

AcquireData
(r2 ,l2)
1.0

l3

l1 l2 l4

l5

r1 r2

q2=s2

x

Cr1
Cr2
Ir1
Ir2

Dr1,l3
Dr2,l2
Bl2

U(x)

l3
l2
T

T

F

F

F

V(x)

t2
t0
t1
t0
t0
t0
t0

R(x)

t2
t0
t1
t0
t0
t0
t0

...

l3

l7
l8

r1
l3

l7
l8

r1
l3

l3

l1 l2 l4

l5

r1 r2

l3

l1 l2 l4

l5

r1 r2

l3

l1 l2 l4

l5

r1 r2

l3

l1 l2 l4

l5

r1 r2

l3 l3

l2

l2

Figure 2.4: Example of quantum states

2.2.8 Observation of State Variables

As in quantum physics, a quantum state is only determined (collapsed) when it
is observed [41]. An observation causes a determination which reduces the concerned
superposition sX̆ to a particular determined partial state s̆X̆ ∈ sX̆ . The observation
of state variables is required because actions are not applicable when their conditions
or outcomes involve undetermined state variables. The observation of a state variable

78

2.2. Basic Concepts

x is represented as a special action ActionObserve(x) in QuanPlan.

Algorithm 9 Observation of a state variable in a quantum state

1. function Observe(x ∈ X, q = {sX̆1
, . . . , sX̆n

})
2. i← find i such that x ∈ X̆i

3. Qr ← ∅
4. for each s̆X̆i

∈ sX̆i

5. q′ ← q \ sX̆i

6. tdeterm ← maxx′∈X̆i
s̆X̆i

.V(x′)
7. s̆′

X̆i
← s̆X̆i

8. s′X̆i
← {s̆′

X̆i
}

9. P (s̆′
X̆i
| s′X̆i

)← 1.0
10. q′ ← q′ ∪ s′X̆i

11. for each X̆ ∈ q′
12. for each x′ ∈ X̆
13. s̆′

X̆i
.V(x′)← max(s̆′

X̆i
.V(x′), tdeterm)

14. P (q′ | ActionObserve(x), q)← P (s̆X̆i
|sX̆i

)
15. Qr ← Qr ∪ q′
16. return Qr

Algorithm 9 describes the Observe function which is the core of the special action
ActionObserve. It returns the set of all possible quantum states when observing
a state variable x in a quantum state q. Line 2 selects the ith superposition of
partial states in q such that x ∈ X̆i. The observation of state variable x causes the
simultaneous determination of all state variables in X̆i. The loop starting at Line 4
iterates on all partial states in the concerned superposition of the state variable x.
Each partial state s̆X̆i

corresponds to a specific outcome of a started nondeterministic
action. Each iteration generates a quantum state q′, which is initialized at Line 5 by
removing the superposition of partial states sX̆i

. Line 6 computes the determination
time tdeterm. It corresponds to the maximum of valid times of involved time random
variables. Line 7 copies the current partial determined state to s̆′

X̆i
. Line 8 constructs

a completely determined partial state superposition s′X̆i
which only contains the

determined partial state s̆′
X̆i
. Because it will be completely determined in the resulting

quantum state q′, it has a probability of 1 (Line 9). The observation of a state variable
causes the time to advance to time tdeterm. Line 10 adds the superposition related to
state variable x to the quantum state q′. Lines 11–13 force the valid time associated
to all state variables to be at least time tdeterm. This step is important to make sure

79

2.2. Basic Concepts

that no action can be started before time tdeterm in quantum state from q′ and its
descendents. Line 14 sets the probability of quantum state transition for the special
action of observing x. Line 15 adds the constructed quantum state q′ to the set of
resulting quantum states Qr, which is returned at Line 16.

Figure 2.5 illustrates an example of observing the state variable Dr1,l3 in the
quantum state q3. The determination generates two quantum states q4 and q5. The
probabilities of observation in the original superposition correspond to the probability
of transitions.

q4
s4,0
P

Cr1 @t4/t4
Cr2 @t4/t4
Ir1 @t4/t4
Ir2 @t4/t4
Dr1 ,l3 @t4/t4
Dr2 ,l2 @t4/t4
...

1.0

l3
l2
F

T

F

F

...

Observe(Dr1 ,l3)
0.3

q5
s5,0
P

Cr1 @t4/t4
Cr2 @t4/t4
Ir1 @t4/t4
Ir2 @t4/t4
Dr1 ,l3 @t4/t4
Dr2 ,l2 @t4/t4
...

1.0

l3
l2
F

T

T

F

...

Observe(D r1 ,l3)
0.7

q3
s3,0

P

Cr1 @t2/t4
Cr2 @t0/t0
Ir2 @t0/t0
Dr2 ,l2 @t0/t0
...

1.0

l3
l2
T

F

...

s3,1

P

Ir1 @t4/t4
Dr1 ,l3 @t4/t4

0.3

F

F

0.7

F

T

l3

l7
l8

r1
l3

l7
l8

r1
l3

l7
l8

r1
l3

l3

l7
l8

r1
l3

Figure 2.5: Example of an observation of a state variable

2.2.9 Goal

A goal G = {g1, . . . , gn} is a set of n timed goal state features. A timed goal state
feature g = (x, v, t) ∈ G means that state variable x has to be assigned the value v

80

2.3. Policy Generation in the Quantum State Space

within t ∈ R+ time. A goal G is satisfied in a quantum state q (denoted q |= G) when
the relevant states variables are completely determined to the desired values. Note
that the satisfaction of a goal (q |= G) is implicitly a Boolean random variable.

2.3 Policy Generation in the Quantum State Space

QuanPlan applies the dynamic programming of MDP [12] to generate plans. A
planning problem is an MDP defined by a 7-tuple (Q,A, C, Pr, s0,G), where:

– Q is a set of quantum states which is finite when horizon time is bounded.
– A = A ∪ {ActionObserve(x) | x ∈ X} is an augmented set of actions where A
are the actions of the planning domain and the actions ActionObserve(x) such
x ∈ X are special actions of QuanPlan.

– C = {Ca | a ∈ A} is an optional set of random variables representing the cost
of actions.

– P (q′ | a, q) is the probabilistic transition model which returns the probability
of reaching the quantum state q′ ∈ Q by applying the action a ∈ A from q ∈ Q.
Note that transitions on actions in A are deterministic. The transition proba-
bilities of ActionObserve actions are computed by the Line 14 of Algorithm 9.

– q0 ∈ Q is the initial quantum state (generally completely determined).
– G is the goal to satisfy.
The Bellman value function J : Q→ R is defined by Equation (2.1). Qq,a is used as

a shorthand for the set of resulting quantum states when applying action a ∈ A from
quantum state q. The value J(q) of a quantum state q ∈ Q represents the cost of the
total execution of a plan which passes by quantum state q. The evaluation of values
implies the estimation of random variables in the Bayesian network, which is done by
a direct sampling algorithm [9]. When q satisfies the goal G, noted q |= G, the value
J(q) equals the expected value of the maximum of all time random variables multiplied
by a weight factor α. The α parameter is used to mix the expected makespan of a
plan to the expected cost of actions. Otherwise, if q 6|= G, the value function J(q)
takes as value the lowest cost of an action cost plus the weighted value of successor
states.

81

2.3. Policy Generation in the Quantum State Space

J(q) =

α× E

[
max
x∈X

q.V(x)
]

if q |= G

min
a∈A

E[ca] +
∑
q′
P (q′|a, q)J(q′)

 otherwise
(2.1)

A solution plan is a policy π defined by mapping function π : Q → A. A pol-
icy returns an action a ∈ A for each quantum state q ∈ Q. A policy is given by
Equation (2.2).

π(q) = arg min
a∈A

E[ca] +
∑
q′
P (q′|a, q)J(q′)

 (2.2)

2.3.1 Example of Partial Search in the Quantum State Space

q3

P

Cr1 @t2/t4
Bl3 @t0/t0

1.0

l3

F

P

Ir1 @t4/t4
Dr1,l3@t4/t4

0.3

F

F

0.7

F

T

AcquireData(r1,l3)

q0

P

Cr1 @t0/t0
Ir1 @t0/t0
Dr1,l3 @t0/t0
Bl3 @t0/t0

1.0

l1

F

F

F

q1

P

Cr1 @t0/t0
Ir1 @t1/t1
Dr1,l3 @t0/t0
Bl3 @t0/t0

1.0

l1

T

F

F

Goto(r1,l1,l3)

1.0

q6

P 1.0

l3

F

F

F

InitSensor(r1)

1.0

q2

P 1.0

Goto(r1,l1,l3)
1.0

InitSensor(r1)
1.0

q4

P

Cr1 @t4/t4
Ir1 @t4/t4
Dr1,l3 @t4/t4
Bl3 @t4/t4

1.0

l3

F

F

F

Observe(Dr1,l3)
0.3

q5

P 1.0

l3

F

T

F
Observe(Dr1,l3)

0.7

q7

Transmit(r1,l3)

1.0

q8

InitSensor(r1)

1.0
Cr1 @t2/t2
Ir1 @t0/t0
Dr1,l3 @t0/t0
Bl3 @t0/t0

l3

T

F

F

Cr1 @t2/t2

Ir1 @t1/t1
Dr1,l3 @t0/t0

Bl3 @t0/t0

1.0

s3,0

s3,1

Cr1 @t4/t4
Ir1 @t4/t4
Dr1,l3 @t4/t4
Bl3 @t4/t4

Figure 2.6: Example of expanded quantum state space

t0

=0

t1

=t0+dGoto(r1,l1,l3)

t2

=t0+dInitSensor(r1)

dGoto(r1,l1,l3)

~N(200, 40)

dInitSensor(r1)

~U(200, 300)

dAcquire(r1,l3)

~U(30,60)

t4

=t3+dAcquire(r1,l3)

t3

=max(t1,t2)

Figure 2.7: Example of expanded Bayesian network

Figure 2.6 presents a partial search graph for a Rovers problem where the goal G is

82

2.3. Policy Generation in the Quantum State Space

to acquire and transmit a data from location l3. The Bayesian network in Figure 2.7
illustrates the equations of time random variables and the probability distributions
followed by the action duration random variables. Only relevant states variables
are shown to save space. Quantum state q0 represents the initial state where the
rover r1 is initially located at location l1, its sensor is not initialized and no data
has been acquired or transmitted yet. The quantum state q1 is obtained by applying
action InitSensor(r1) from state q0. The quantum states q2, q3, q4, q5 are the same
as previous examples except that state variables related to rover r2 are not shown.
The quantum state q6 is obtained by first starting the action Goto(r1, l1, l3) from
q0. Applying the action InitSensor(r1) from q6 leads to q2. The quantum state q4

represents the observation of a failure of data acquisition. A contingency branch
starts with the reinitialization of the sensor (q7). The quantum state q5 represents
a successful data acquisition. Applying action Transmit from q5 leads to q8 which
satisfies the goal G. Random variables representing durations in Figure 2.7 follow
normal (N) and uniform (U) distributions.

2.3.2 Advanced Policy Generation

In the previous formulation, policies map exactly one action to be started for each
state. Adopting these policies does not guarantee an optimal behaviour because the
observed durations of actions at execution are not considered in the decision making
process.

To be optimal, a decision policy must consider the current time λ in addition to
the current state q. A decision is to select an action to be started. However, the best
action to be started may be not ready because it requires the completion of other
actions. At execution, the time random variables in the Bayesian network implicitly
become evidences as soon their value can be observed, i.e. when related actions are
completed. An action a is ready in current state q at current time λ if and only if
q.V(x) ≤ λ for all involved state variables x in the conditions of a. The decision is
made by conditioning Bellman values J(q) on the start time of actions (J(q) is now
a random variable). Starting a ready action a at time ta = λ has E[J(Qq,a) | ta = λ]
as value. If an action is not ready, i.e. it requires the completion of other actions, its

83

2.3. Policy Generation in the Quantum State Space

start time ta is unknown, but has ta > λ constraint. Thus, the value of waiting for
starting a not ready action a is E[J(Qq,a) | ta > λ].

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 250 500 750

V
a
lu

e

Decision Time λ

λb

E[Ja | ta=λ]
E[Ja | ta>λ]
E[Jb | tb=λ]
E[Jb | tb>λ]

Figure 2.8: Values of actions in a state q

The Figure 2.8 illustrates how a decision is made into a quantum state q at current
time λ, where two actions a and b are applicable. If it is ready, the action a is the
best action to be started even b is also ready because a has to lowest cost. If a is not
ready but b is ready, starting action b is the best choice until a critical time λq,b = 400
at which it becomes preferable to wait for a instead starting b.

QuanPlan expands a subset of the quantum state space Qe ∈ Q using the
Labelled Real Time Dynamic Programming (LRTDP) [16] algorithm. Then for each
expended state q ∈ Qe, a critical time λq,a is computed for each action a ∈ A. The
structure of a policy π is a mapping function π : Q → Rn where n = |A|. At
execution, the first action which becomes ready before its critical time is selected in
each state.

2.3.3 Optimality

QuanPlan provides guaranties about optimality and completeness. Because an
approximate estimation algorithm is used to estimate the distribution of random vari-
ables, the generated policies are also approximately optimal. The distance between

84

2.4. Empirical Results

the cost of generated policies and an optimal plan can be bounded to an ε under a
given confidence level, which is related to the maximum error of estimation errors in
the Bayesian network.

2.4 Empirical Results

The Rovers planning domain is used as a benchmark to validate the efficiency
of the compact representation of planning quantum states. QuanPlan is compared
to DURtc, a concurrent MDP planner based on the works of Mausam and Weld
(2008), in which we added the support of time constraints (noted tc). To support
time constraints, the interwoven state representation is augmented by a current time
variable λ. Both planners implement the LRTDP [16] algorithm and use equivalent
heuristics. The time horizon is also bounded to prevent an infinite state expansion.
The FPG planner [18] was also considered because it supports action concurrency
and uncertainty on duration and outcomes. However, results with FPG were not
conclusive because FPG failed to solve most of problems. We suspect that FPG
was not able to solve problems because it does not use heuristics that can catch the
dependencies between actions.

Table 2.2: Empirical results on the Rovers domains
Problem QuanPlan DURtc FPG
|R| |G| CPU Cost CPU Cost CPU Cost
1 2 0.51 1927 4.99 1932 4 2340
1 3 1.33 2553 112 2563 >300 –
1 4 4.04 3001 >300 – >300 –
1 5 53.3 3642 >300 – >300 –
2 2 4.1 1305 65.2 1313 >300 –
2 3 14.9 2129 >300 – >300 –
2 4 56.0 1285 >300 – >300 –
2 5 >300 – >300 – >300 –

Table 2.2 reports results 4 . First two columns report the size of problems, i.e. the
4. Note that reported results in Table 2.2 are made on different problems of those in Table 1.2.

Moreover, since problems reported here have uncertainty on the AcquireData action, generated
plans are not comparable to those of ActuPlan which have no uncertainty.

85

2.5. Conclusion

number of rovers and goals. For each planner, the running CPU time (seconds) and
the cost (expected makespan) of generated plans are reported. No cost are reported
for unsolved problems within the maximum allowed planning time (300 seconds).
These results demonstrate that our approach performs better than the discrete time
planner DURtc. For some problems, the results of QuanPlan and DURtc are slightly
different. Two reasons explain that. Because QuanPlan relies on a direct sampling
algorithm to estimate the random variables, an estimation error (typically ±5 units)
is possible. Second reason is that DURtc is based on a discrete time model. The
granularity on time offers a trade-off between the size of the state space and the level
of approximation. Here, times are aligned (rounded up) to multiples of 30 units of
time.

2.5 Conclusion

This paper presented QuanPlan, a hybrid planner for solving planning prob-
lems with concurrent actions having uncertainty on both duration and outcomes. A
compact state representation (planning quantum states) has been introduced to com-
pactly represent future possible states based on their undetermined outcomes. To
the best of our knowledge, our combination of Bayesian network and MDP is unique.
The dynamically generated Bayesian network efficiently model the uncertainty on the
duration of action by enabling a continuous time model rather than a discrete one.
The MDP framework handles uncertain action outcomes. The experimental results
are quite promising and show the efficiency of using our compact state representation.
Future works include the investigation of efficient heuristics to scale our approach to
larger problems.

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council
of Canada (NSERC) and the Fonds québécois de la recherche sur la nature et les
technologies (FQRNT).

86

Chapitre 3

Application des processus
décisionnels markoviens afin
d’agrémenter l’adversaire dans un
jeu de plateau

Résumé
Les jeux de plateau sont souvent pris en exemple pour l’enseignement d’al-

gorithmes de prise de décisions en intelligence artificielle (IA). Ces algorithmes
sont généralement présentés avec beaucoup d’accent sur la maximisation du
gain pour le joueur artificiel. D’autres aspects, comme l’expérience de jeu des
joueurs humains, sont souvent négligés. Cet article présente un jeu de plateau
simple, basé sur le jeu de serpents et échelles, dans lequel la prise de décisions
joue un rôle déterminant en plus de l’incertitude. Ce jeu est utilisé pour in-
troduire des techniques de résolution, des stratégies et des heuristiques afin
d’orienter la prise de décision en vue de satisfaire différents objectifs. Un des
principaux défis est la génération d’une politique décisionnelle qui procure un
défi intéressant à l’adversaire, et ce, tout en s’adaptant automatiquement à
son niveau. Les solutions présentées sont basées sur les processus décisionnels
de Markov (MDP).

87

Commentaires
Cet article a été publié et présenté à la conférence IEEE Computational

Intelligence and Games (CIG-2010) [6]. La contribution de cet article se situe
davantage du côté des applications que du côté théorique. L’article vise le
domaine des jeux, un créneau très intéressant pour l’application et la mise en
valeur de techniques d’intelligence artificielle. Des algorithmes de planification
permettent de guider les décisions des personnages artificielles afin d’offrir aux
joueurs humains des défis plus stimulants et un meilleur réalisme. L’article
s’intègre dans la thèse dans la mesure où le jeu présenté inclut de l’incertitude
et de la concurrence d’actions. La concurrence d’actions se manifeste dans une
situation d’adversité où deux joueurs s’affrontent. Leurs actions alternées sont
modélisées à l’aide de macro-actions qui génèrent des transitions dans un MDP.

L’article étant présenté de façon pédagogique, il apporte également une
contribution au niveau de l’enseignement des MDP. Certaines idées présen-
tées dans cet article font l’objet d’un travail pratique donné aux étudiants de
premier cycle dans le cadre d’un cours d’intelligence artificielle (IFT 615) au
Département d’informatique. Éric Beaudry est l’auteur principal de cet article,
en plus d’être l’instigateur du projet. Les étudiants à la maitrise Francis Bisson
et Simon Chamberland ont participé à la rédaction et à la réalisation des ex-
périmentations, sous la supervision d’Éric Beaudry et de Froduald Kabanza.

Droits de reproduction
L’article présenté dans ce chapitre est une copie quasi intégrale de la version

publiée. Suite aux recommandations du jury, quelques modifications mineures
ont été apportées. Il est à noter que les droits de reproduction du matériel
présenté dans ce chapitre sont détenus par IEEE. En date du 5 mars 2011, une
permission de reproduction a été accordée à l’auteur par IEEE afin d’intégrer
l’article dans cette thèse. Cette permission permet à l’auteur, à l’Université de
Sherbrooke et à Bibliothèque et Archives Canada de distribuer des copies du
présent chapitre.

88

Using Markov Decision Theory to Provide a Fair
Challenge in a Roll-and-Move Board Game 1

Éric Beaudry, Francis Bisson, Simon Chamberland, Froduald Kabanza
Département d’informatique, Université de Sherbrooke,

Sherbrooke, Québec, Canada J1K 2R1
eric.beaudry@usherbrooke.ca, francis.bisson@usherbrooke.ca,

simon.chamberland@usherbrooke.ca,
froduald.kabanza@usherbrooke.ca

Abstract

Board games are often taken as examples to teach decision-making algo-
rithms in artificial intelligence (AI). These algorithms are generally presented
with a strong focus on winning the game. Unfortunately, a few important
aspects, such as the gaming experience of human players, are often missing
from the equation. This paper presents a simple board game we use in an
introductory course in AI to initiate students to gaming experience issues.
The Snakes and Ladders game has been modified to provide different levels
of challenges for students. This adaptation offers theoretical, algorithmic
and programming challenges. One of the most complex issue is the gener-
ation of an optimal policy to provide a fair challenge to an opponent. A
solution based on Markov Decision Processes (MDPs) is presented. This
approach relies on a simple model of the opponent’s playing behaviour.

1. c© 2010 IEEE. Reprinted, with permission from Éric Beaudry, Francis Bisson, Simon
Chamberland and Froduald Kabanza, Using Markov Decision Theory to Provide a Fair Challenge in
a Roll-and-Move Board Game, IEEE Computational Intelligence and Games, August 2010.

89

3.1. Introduction

3.1 Introduction

It is well known that computer science students are often avid video game players.
Thus, using games in computer sciences classes is a good teaching strategy to get
students interested. It is not surprising that most textbooks [57, 44] in the field of
artificial intelligence (AI) use games to introduce formal algorithms. Simple board
games such as the n-puzzle, tic-tac-toe, Gomoku and chess are often used in AI
courses because they are usually well known by most people. These games also offer
the advantage of being easy to implement because they generally have a discrete
representation as well as simple rules.

In classical AI courses, the main focus of homework assignments usually is the
design of an AI that optimizes its decisions to win the game. Unfortunately, a few
important aspects are disregarded and one of them is user experience.

Today, an important trend in the design of video games is to provide a fair chal-
lenge to human players. Properly balancing the difficulty level of an intelligent adver-
sary in a video game can prove to be quite a laborious task. The agent must be able
to provide an interesting challenge to the human player not to bore him. On the other
hand, an opponent that exhibits an optimal behaviour will result in a player that will
either be discouraged or accuse his opponent of cheating. Different strategies can be
adopted to create an AI with various difficulty levels.

A rubber band (i.e., cheating) AI [59] describes an artificial player that is given
an advantage over human players through various means. For example, artificial
players may have a perfect visibility of the state of the world, obtain better items, or
attain greater speeds. Rubber banding is especially common in racing video games
(for instance, the Mario Kart series [48]): human players are led to believe they are
winning the race, only to see their opponents get speed boosts for dragging behind too
much, and zoom right past them at the last moment. A human player experiencing
such a situation is likely to be frustrated and stop playing the game.

In this paper, we show how it is possible to use a Markov Decision Process (MDP)
[12] solving algorithm to compute a policy for an autonomous intelligent agent that
adjusts its difficulty level according to its opponent’s skill level. The resulting pol-
icy ensures that the artificial opponent plays suboptimally against an inexperienced

90

3.1. Introduction

player, but also plays optimally when its adversary is leading the game. This allows
the opponent to offer a challenge to the human player without exhibiting a cheating
behaviour.

A modified version of the well-known Snakes and Ladders board game is used as
a testbed and as the game framework for a homework assignment in our introductory
AI course for undergraduate students. As opposed to the usual rules of the game
where chance totally determines the final state of the game, our modified game allows
the players to decide of an action to take at each turn. Three actions are allowed:
advancing by one square on the board, throwing one die, or throwing two dice. Since
each action has a different probabilistic outcome, the player has to carefully think
about which action is the best on each square of the board. The board configuration,
i.e., the snakes and ladders, strongly influences the actions to be taken. Since this
game is non-deterministic and involves a sequence of decision-making, the Markov
Decision Process (MDP) formalism comes as a natural approach to compute optimal
policies.

Although the game seems trivial at first glance, it nevertheless offers different
types of interesting challenges. The simplest problem in Snakes and Ladders is to
decide which actions to take in order to reach the end of the board as quickly as
possible. This problem is easily solved using an MDP to compute an optimal policy
which assigns an action to each board position. However, in a multiplayer context,
adopting this policy is not always the best strategy for winning the game. In many
situations, players may have to attempt desperate or riskier moves in order to have
a chance to win the game. Consequently, the position of the opponent has to be
considered to act optimally. The MDP framework can be used to solve this problem
optimally.

A more interesting issue arises when trying to provide a fair challenge to the
adversary. One possible solution is to model the gaming experience of the opponent.
Instead of generating a policy that exclusively optimizes the winning probability, the
MDP could generate a policy which optimizes the opponent’s gaming experience.

There are also other types of interesting issues that come with this simple game.
For instance, very large virtual boards can be quite hard to solve optimally. Fortu-
nately, many strategies can be used to speed up MDP solving: heuristics to initialize

91

3.2. Background

the values of states, an improved value iteration algorithm like Real-Time Dynamic
Programming (RTDP) [5] or Labeled RTDP (LRTDP) [16], and other ad hoc pro-
gramming tricks.

The rest of this paper is organized as follows. Section 3.2 introduces the MDP
framework. Sections 3.3 and 3.4 describe, respectively, how to compute an optimal
policy to win the game and an optimal policy to optimize user experience. A conclu-
sion follows in Section 3.5.

3.2 Background

Markov Decision Processes (MDPs) are a well-established mathematical frame-
work for solving sequential decision problems with probabilities [12]. They have been
adopted in a variety of fields, such as economic sciences, operational research and
artificial intelligence. An MDP models a decision-making system where an action
has to be taken in each state. Each action may have different probabilistic outcomes
which change the system’s state. The goal of an MDP solving algorithm is to find
a policy that dictates the best action to take in each state. There exist two main
formulations for MPDs: one strives to minimize costs and the other aims to maximize
rewards.

3.2.1 Minimizing Costs

Some problems, like path-finding, are easier to model using a cost model for the
actions. The objective is to compute a policy which minimizes the expected cost to
reach a goal state. Formally, an MDP is defined as a 7-tuple (S,A, P, C, s0, G, γ),
where:

– S is a finite set of world states;
– A is a finite set of actions that the agent could execute;
– P : S × S × A → [0, 1] is the state probability transition function. P (s′, s, a)
denotes the probability of reaching state s′ when executing action a in state s;

– C : A→ R+ is the system’s cost model;
– s0 ∈ S is the initial world state;

92

3.2. Background

– G ⊆ S is the set of goal states to be reached;
– γ ∈]0, 1] is the discount factor.
A decision is the choice to execute an action a ∈ A in a state s ∈ S. A policy is a

strategy (a plan), that is, the set of decisions for every state s ∈ S. An optimal policy
is a policy which assigns the action which minimizes the expected cost to reach the
goal in every state.

Several algorithms exist to compute an optimal policy, given a cost model. The
value iteration algorithm [12] uses the Bellman equation to compute the best action
for each state in a dynamic programming fashion. It starts by computing a value
V (s) for each state s ∈ S by making several iterations of Equation (3.1).

V (s) =

0, if s ∈ G else

min
a∈A

C(a) + γ
∑
s′∈S

P (s′, s, a) · V (s′)
 (3.1)

Once the values of states have converged, an optimal policy can be extracted
using Equation (3.2). There may exist several optimal policies since, given a state, it
is possible for two or more different actions to have the same minimal expected cost.

π(s) = arg min
a∈A

C(a) + γ
∑
s′∈S

P (s′, s, a) · V (s′)
 (3.2)

In other words, each state s ∈ S is associated with the action a ∈ A that has
the best compromise between cost (C(a)) and the expected remaining cost of actions’
outcomes. When γ = 1, this problem is also known as the stochastic shortest path
problem.

3.2.2 Maximizing Rewards

Other problems are not naturally expressed with a cost model. Consider the robot
motion planning domain in Figure 3.1. The map is represented as an occupancy grid
where black and grey squares are obstacles, the blue triangle is the robot’s initial
position and the green circle is the goal. Computing a policy which avoids black and
grey squares as much as possible could be done by attributing a positive reward to

93

3.2. Background

the goal state and a negative reward to undesirable states (e.g., obstacles). Thus, the
objective with this formulation of MDPs is to compute a policy which maximizes the
expected reward in each state.

Figure 3.1: Occupancy grid in a robot motion planning domain. Different colours
represent the different initial reward values: Black = −1, Grey = −0.4, White = 0
and Green (goal) = 1. The robot’s initial position is denoted by the blue triangle.

The formal definition of a rewards-maximizing MDP is identical to that of cost-
minimizing MDPs, except for the cost model (C : A → R+) and the goal G, which
are replaced by a rewards model (R : S → R). This rewards model associates each
state with a desirability degree. The Bellman equation for this formulation is given
in Equation (3.3).

V (s) = R(s) + γmax
a∈A

∑
s′∈S

P (s′, s, a) · V (s′) (3.3)

In this formulation, the best action maximizes the expected reward in every state
instead of minimizing the cost to reach the goal. An optimal policy is then extracted
using Equation (3.4).

π(s) = arg max
a∈A

∑
s′∈S

P (s′, s, a) · V (s′) (3.4)

94

3.2. Background

3.2.3 Algorithms for Solving MDPs

There exist several algorithms for solving MDP problems, such as value iteration
and policy iteration [57]. The value iteration algorithm iteratively evaluates the
Bellman equations (Equations 3.1 and 3.3) for each state until they all converge.
After convergence, the policy is extracted using Equation (3.2) or Equation (3.4),
depending on the chosen MDP formulation.

As its name suggests, the policy iteration algorithm iterates on policies rather
than on state values. It starts with an arbitrary policy that is iteratively refined.
During an iteration, the max operator in the Bellman equation may be removed,
since the policy is fixed; this results in a linear equation system. This linear equation
system is solved to compute the state values V (si). At the end of each iteration, a
new policy is extracted. The optimal policy is obtained when there is no change in
two successive iterations.

Some advanced techniques have been proposed for solving MDPs. The Real-
Time Dynamic Programming (RTDP) algorithm [5] is a popular technique to rapidly
generate good, near-optimal policies. The key idea is that some states have a higher
probability than others to be reached during execution. Instead of iterating on the
entire state space, the RTDP algorithm begins trials from the initial state, makes a
greedy selection over the best action, and then stochastically simulates the successor
state according to the state probability transition function. When a goal state is
reached, a new trial is started. This process is repeated until convergence of the
greedy policy.

To be efficient, the RTDP algorithm requires a heuristic function to initialize the
state values. The algorithm is guaranteed to converge to an optimal policy when the
heuristic is admissible [16]. The main advantage of the RTDP algorithm is that, when
given a good heuristic function, it can produce a near-optimal policy much faster than
any value iteration or policy iteration algorithm.

Although RTDP gives good results fast, its convergence is very slow, due to the
greedy nature of the selection of states to explore. States with high probabilities of
being reached are visited (and their values computed) over and over again, to the
detriment of other, less likely states.

Labeled RTDP [16] (or LRTDP for short) is an improved version of RTDP that

95

3.3. Optimal Policy for Winning the Game

consists in labelling states which have already converged to their optimal values.
Solved states (i.e., states that have reached convergence) are avoided during the
stochastic choice of successor states in the trials, thus allowing the algorithm to visit
more states and converge faster towards an optimal policy.

3.3 Optimal Policy for Winning the Game

3.3.1 The Modified Snakes and Ladders Game with Deci-
sions

The Snakes and Ladders game is a roll-and-move game which is played on a grid
board. The winner is the player who first reaches the end of the board. In the classic
game, players throw two dice and advance their position by the sum of the dice’s
values. Thus, the game is totally determined by chance. Snakes and ladders linking
board squares are spread across the grid. When players reach a square with a ladder,
they automatically advance to the square located at the top of the ladder. When
players reach a square with a snake’s head, they must go back to the square pointed
by the tip of the snake’s tail. It is also possible for a player to have several successive
instantaneous moves (e.g., if a snake starts at the top of a ladder).

The Snakes and Ladders board game has been modified in order to introduce
decisions. Each turn, players have to decide of an action from the set of actions
A = {a1, aD, aT} where:

– a1 is the action to advance by a single square;
– aD is to throw one die;
– aT is to throw two dice.
Each action has a set of possible outcomes which are defined by the function

N : A→ 2{1,...,12}. Outcomes define the number of squares by which the player could
advance on the game board. For instance, N(aD) = {1, 2, 3, 4, 5, 6}. The probability
of outcomes of an action a ∈ A is denoted by P (n ∈ {1, . . . , 12}|a). For instance,
P (6|aT) = 5

36 .
Figure 3.2 presents a simple board for the game with n = 20 squares. The function

T : {0, . . . , n− 1}×{1, . . . , 12} → {0, . . . , n− 1} defines the square the player will be

96

3.3. Optimal Policy for Winning the Game

in after considering the snakes and ladders on the board. For instance in the example
board, T (0, 2) = 2, T (0, 1) = T (0, 4) = 4 and T (10, 1) = 18. Moves that would bring
the player beyond the last board square are prohibited and result in the player not
moving. The last position has to be reached with an exact move. Thus, T (18, 1) = 19
but T (18, 2) = 18 because position 20 does not exist.

Figure 3.2: Simple board for the Snakes and Ladders game. Red arrows represent
“Snakes”, and green arrows represent “Ladders”.

3.3.2 Single Player

The simplest problem in the modified game of Snakes and Ladders is to decide
which actions to take in order to reach the end of the board as quickly as possible
without considering the opponent. This problem is easily solved using an MDP
to compute an optimal policy which attributes an action to each board position.
Since the goal is to minimize the expected number of turns, the cost formulation
of MDPs is the most appropriate one. The state space S is defined as the set of
states for each board position S = {s0, s1, ..., sn−1}, where s0 is the initial state and
sn−1 ∈ G is the final (goal) state. The probabilistic state transition model is defined
by Equation (3.5).

P (sj, si, a) =
∑

x∈N(a)|T (i,x)=j
P (x|a) (3.5)

Since the state horizon is finite (the game ends once the last square is reached)
and the goal is to find the shortest stochastic path, the discount factor γ = 1. All

97

3.3. Optimal Policy for Winning the Game

actions cost one turn; thus, the C(a) term could simply be replaced by 1 and removed
from the summation. By merging Equations 3.1 and 3.5, we obtain Equation (3.6).

V (si) =

0, if i = n− 1 else

1 + min
a∈A

∑
x∈N(a)

P (x|a) · V (sT (i,x))
(3.6)

The value iteration algorithm can be implemented in a straightforward manner
simply by programming Equation (3.6). For small boards, the policy generation is
very fast. However, on larger board (thousands or millions of states) the convergence
could be very slow if implemented in a naïve way. To speed up convergence, many
strategies can be used.

The value iteration algorithm updates the state values V during several itera-
tions until convergence. Most AI textbooks present this algorithm as the process
of updating a V vector using the values V ′ from the previous iteration. A faster
implementation may be achieved by updating a unique vector of V values instead.
Updated values are thus used sooner.

Another strategy that could be added to this one is the use of a particular ordering
for iterating on states. Iterating in the state order is very slow because several itera-
tions is necessary before cost values propagate from the goal state to the initial state.
Thus, starting each iteration from the final state results in much faster convergence.

Table 3.1 shows empirical results for a few iterations of the algorithm on the board
from Figure 3.2. The first column indicates the states. The next columns presents
the current V (si) value after the nth iteration. After nine iterations, the algorithm
has converged and the last column shows the extracted policy. Values in the last
iteration column represent the expected number of remaining turns to reach the end
of the board.

Figure 3.3 compares the running time of a standard MDP implementation with
an optimized one on various board sizes.

98

3.3. Optimal Policy for Winning the Game

Table 3.1: Empirical results for the value iteration algorithm on the board from
Figure 3.2

State Iter#1 Iter#2 Iter#3 ... Iter#9 π

s0 4.03 3.70 3.67 ... 3.66 aT
s1 3.75 3.50 3.48 ... 3.47 aT
s2 3.44 3.28 3.26 ... 3.26 aT
s3 4.18 3.17 3.08 ... 3.07 aT
s4 3.67 3.00 2.94 ... 2.93 aT
s5 3.26 2.91 2.88 ... 2.87 aT
s6 2.84 2.82 2.81 ... 2.80 aT
s7 2.82 2.78 2.77 ... 2.77 aT
s8 2.62 2.61 2.61 ... 2.61 aD
s9 2.72 2.69 2.67 ... 2.67 aD
s10 2.00 2.00 2.00 ... 2.00 a1
s11 2.42 2.40 2.39 ... 2.39 aT
s12 2.00 2.00 2.00 ... 2.00 a1
s13 2.00 2.00 2.00 ... 2.00 a1
s14 2.00 2.00 2.00 ... 2.00 aT
s15 3.33 3.11 3.04 ... 3.00 aD
s16 3.00 3.00 3.00 ... 3.00 a1
s17 2.00 2.00 2.00 ... 2.00 a1
s18 1.00 1.00 1.00 ... 1.00 a1
s19 0.00 0.00 0.00 ... 0.00 aT

3.3.3 Two Players

Playing with the previous policy which minimizes the number of moves to reach
the end of the board as quickly as possible is unfortunately not always the best
strategy to win against an opponent. Let us define the state space by considering the
position of both players on the board. Consider the board and the generated policy
in Figure 3.4. Let the current game state be such that player A is at position 17 and
player B is at position 18. What is the best action for player A? Using the optimal
single-player policy, A will choose action a1 and then reach position 18. However,
player B will win the game at his next turn. The probability of winning the game
in this state is thus zero if we adopt the strategy to reach the end of the board as
quickly as possible. In this situation, the best move is a desperate one: by selecting

99

3.3. Optimal Policy for Winning the Game

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200

T
im

e
 (

s
)

Board Size (×1000 squares)

Standard Implementation
Optimized Implementation

Figure 3.3: Performance improvement of an optimized policy generator

action aD, player A can hope to move by exactly 2 squares and then win the game.
Thus, in this game state, player A still has a probability of 1

6 to win the game using
action aD.

Figure 3.4: Simple board from Figure 3.2 with an optimal single-player policy. Actions
a1, aD and aT have been abbreviated to 1, D and T , respectively, for conciseness.

The computation of the best decision to take in a two players context is more
challenging than in a single-player context. Indeed, decisions in a multiplayer context
do not only depend on the player’s position, but also on the opponent’s position.
A two-players policy associates an action to a pair of positions, and is defined as

100

3.3. Optimal Policy for Winning the Game

π : S → A, where S = {si,j ∀ (i, j) ∈ {0, . . . , n− 1}2}.
Provided that the opponent’s strategy can be modelled using one such policy πsp

(which does not evolve over time), we can calculate a policy π′(πsp) maximizing the
chances of winning the game against said opponent. Several algorithms can be used
to compute π′(πsp).

Since this is a zero-sum game with two players, one could suggest using Alpha-
Beta Pruning-based algorithms. Algorithm 10 presents an adaptation of the classic
algorithm to consider chance nodes [3]. A limitation of Alpha-Beta Pruning is that
it requires to reach leaf nodes of the search tree to make an optimal decision. Even if
a very small board is used, leaf nodes could be very deep in the search tree. Another
problem is that the outcome of the actions are probabilistic, which may produce
infinite loops with a non-zero probability. A common strategy is to cut the search
tree by setting a maximum depth. Nodes at this depth are evaluated using a heuristic
function. This evaluation function is generally approximate and cannot guarantee
optimality.

To guarantee optimality, an MDP can be used. Since MDPs are designed for
sequential decision-making problems, one may question this choice because it does
not naturally fit games with adversaries. However, since an assumption is made on
the behaviour of the opponent (by using a fixed policy), it is possible to integrate the
opponent’s choices in the player’s decisions.

The cost formulation of MDPs is not exactly appropriate anymore since the goal
is not to minimize the expected number of turns, but rather to reach the end of the
board before the opponent. We thus adopt the rewards formulation: a reward is
simply put on states where the player wins the game. Since all winning states are
considered equivalent (winning by a distance of 2 or 200 positions is equivalent) the
reward is set uniformly as given by Equation (3.7).

R(si,j) =

1, if i = n− 1 ∧ j < n− 1 else

0
(3.7)

The transition probability function is defined in such a way as to consider that
both players move simultaneously, as described in Equation (3.8).

101

3.3. Optimal Policy for Winning the Game

Algorithm 10 Alpha-Beta Pruning with Chance Nodes

1. AlphaBetaSearch(si,j)
2. (value, action)←MaxNodeSearch(si,j ,−∞,+∞)
3. return action

4. MaxNodeSearch(si,j,α, β)
5. if i = n− 1 return +1
6. if j = n− 1 return −1
7. value← −∞
8. for each ai ∈ A
9. v ← 0
10. for each x ∈ N(ai)
11. i′ ← T (i, x)
12. (vn, aj)←MinNodeSearch(si′,j , α, β)
13. v ← v + P (x|ai) · vn
14. if v > value
15. value← v
16. action← ai
17. if value ≥ β break
18. α← max(α, value)
19. return (value, action)

20. MinNodeSearch(si,j,α, β)
21. if i = n− 1 return +1
22. if j = n− 1 return −1
23. value← +∞
24. for each aj ∈ A
25. v ← 0
26. for each y ∈ N(aj)
27. j′ ← T (j, y)
28. (vn, ai)←MaxNodeSearch(si,j′ , α, β)
29. v ← v + P (y|aj) · vn
30. if v < value
31. value← v
32. action← aj
33. if value ≤ α break
34. β ← min(β, value)
35. return (value, action)

102

3.3. Optimal Policy for Winning the Game

Mi,i′ = {x ∈ N(a)|T (i, x) = i′}
Mj,j′ = {y ∈ N (πsp(sj)) |T (j, y) = j′}
P (si′,j′ , a, si,j) =

∑
x∈Mi,i′

P (x|a)
∑

y∈Mj,j′

P (y|πsp(sj))
(3.8)

Integrating Equations 3.3 and 3.8 results in Equation (3.9).

V (si,j) = R(si,j)
+ max

a∈A

∑
x∈N(a)

P (x|a)

·
∑

y∈N(πsp)
P (y|πsp) · V (sT (i,x),T (j,y))

(3.9)

i \ j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 T T T T T T T T T T T T T T T T T T 1 T

1 T T T T T T T T T T T T T T T T T T 1 T

2 T T T T T T T T T T T T T T T T T T 1 T

3 T T T T T T T T T T T T T T T T T T 1 T

4 T T T T T T T T T T T T T T T T T T 1 T

5 T T T T T T T T T T T T T T T T T T 1 T

6 T T T T T T T T T T T T T T T T T T 1 T

7 D T T T T T T T T T T T T T T T T T T T

8 D D D D D D D D D D D D D D D D D D T T

9 1 D D D D D D D D D D D D D D D D D T T

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 T T

11 1 T T T T T T T T T T T T T T T T T T T

12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 T T

13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 D T

14 T T T T T T T T T T T T T T T T T T D T

15 D D D D D D D D D D D D D D D D D D D T

16 1 1 1 1 D D D D D D D D D D D D D D D T

17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 D T

18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 T

19 T

Figure 3.5: Optimal policy to beat an opponent playing with an optimal policy to
reach the end of the board as quickly as possible. The row index i gives the position
of the AI player and the column index j gives the opponent’s position.

Since we consider simultaneous moves in state transition, an important question
is what happens when both players reach the end of the board during the same turn.
Since we play before the opponent, reaching the state sn−1,n−1 from an another state
si,j such that i, j < n − 1 means that the first player reaches the end before the

103

3.3. Optimal Policy for Winning the Game

opponent. Thus, if a draw is not allowed, a reward should be put on this particular
square: R(sn−1,n−1) = 1.

Figure 3.5 shows an optimal policy to beat an opponent playing an optimal policy
to reach the end of the board as quickly as possible. Note that the optimal policy is
not necessarily unique. At each turn, the player in square i, which plays against an
opponent in square j, looks up the cell (i, j) to take the best action which maximizes
his chance of winning.

Table 3.2 presents results which compare the percentage of games won by the
single-player optimal policy (computed as presented in Section 3.3.2) against the
two-players optimal policy (computed as presented here) on a board of size n = 1000
squares. Results shows an improvement of 3 % of winning chances when using the
two-players optimal policy against a single-player optimal one.

Table 3.2: Percentage of wins between single- and two-players policies
vs Single-Player Policy Two-Players Policy

Single-Player Policy 50 % 47 %
Two-Players Policy 53 % 50 %

Figure 3.6 presents the required time to generate single-player and two-players
policies. Optimal decision-making which considers the opponent comes at a cost: the
state space grows quadratically as the board size increases.

3.3.4 Generalization to Multiplayer

Considering more than two players offers a new challenge. Similarly to the single-
player to two-players generalization, a simple avenue is to add a new dimension to the
state space. Thus, a state could be defined by a m-tuple s = (p1, p2, . . . , pm) which
gives the positions of all m players. A problem with this approach is that the size
of the state space grows with the size of the board and the number of players, i.e,
||S|| = nm. Solving this problem in an optimal way becomes quickly intractable. A
viable approximation for multiplayer is to model the game as a two players game and
only consider the opponent that is closest to the goal state.

104

3.4. Optimal Policy for Gaming Experience

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000

T
im

e
 (

s
)

Board Size (squares)

Single Player
Two Players

Figure 3.6: Required time to generate single- and two-players policies

3.4 Optimal Policy for Gaming Experience

A more complex aspect of the game involves considering the gaming experience of
a human opponent. Playing against an opponent with a similar skill level is generally
more fun than playing against someone who is too strong or too weak. Properly
balancing the difficulty level of an intelligent adversary in a video game can prove to
be quite a laborious task.

Before proposing a solution to this problem, there is an important question we
need to answer: what exactly is gaming experience? Without a clear definition, it
is difficult to try to maximize it. Thus, a formal gaming experience mathematical
model is required. Elaborating such a model is an orthogonal problem to that of
optimizing an AI player’s decisions to maximize the opponent’s gaming experience.
Once a gaming experience model is given, it is simply integrated into the equation.

As was the case with the policy developed in Section 3.3.3, an assumption has to be
made about the opponent’s playing strategy. For the rest of the paper, consider that
the opponent does not play optimally but rather only follows his intuition. Because
throwing two dice generally allows the player to move closer to the final state, the

105

3.4. Optimal Policy for Gaming Experience

opponent player selects an action using the strategy πopp presented by Equation (3.10).
Note that the opponent only considers his own position j and does not consider the
AI player’s position i.

πopp(si,j) =

aT , if j < n− 6

aD, if n− 6 ≤ j < n− 3

a1, if n− 3 ≤ j

(3.10)

3.4.1 Simple Opponent Abandonment Model

As a simple model of gaming experience, an abandonment rule is defined as follows.
The opponent player abandons the game if he is too far from the AI player’s position
on the board, i.e., the opponent believes he has no chance of winning. Another source
of abandonment is when the opponent has no challenge, i.e., when the opponent
believes that the game is too easy. More precisely, the opponent abandons the game
when the distance between the players’ positions is greater than half the size of the
board.

Thus, the goal of the AI player is to maximize its chance of winning the game
before the opponent abandons. This problem can be solved using an MDP in a similar
way of the one which maximizes the chance of winning against a given opponent. As
done for a two opponents game (Section 3.3.3), i.e., a state is defined as a pair of
positions on the board. The main difference is that there is a set of abandonment
states Sab ⊂ S which is defined as Sab = {si,j ∀ (i, j) ∈ {0, ..., n − 1}2 : |i − j| ≥ n

2},
where n is the number of board squares. By definition, states s ∈ Sab are states where
the opponent abandons the game because of the lack of enjoyment (the opponent being
too weak or too good). Thus, these states are terminal where no action is applicable.
An action applicability function, defined as App : S → A, is used to find out which
actions are applicable in a given state.

Table 3.3 presents empirical results (1 000 000 simulations on a board of size
n = 1000) that demonstrate how using an optimal policy to win the game results in
the abandonment of most games (first column). Instead, a policy computed by taking
account of the opponent’s model greatly reduces the number of abandonments, while

106

3.4. Optimal Policy for Gaming Experience

still exposing an optimal behaviour, in the sense the AI player wins the majority
of games. Note that this could also discourage the opponent; the policy could be
improved to try to balance the number of wins and losses.

Table 3.3: Improvement when considering the abandonment model
Final Game State Optimal Policy Considering Opponent Model
Wins 33.9 % 97.1 %
Losses 0.6 % 1.6 %
Abandonments 65.5 % 1.3 %

Solving MDPs for large state spaces takes very long time to converge to an optimal
policy. In most situations, a near-optimal policy, generated with an algorithm such as
RTDP, is very much acceptable since these techniques produce good results in a short
amount of time. Figure 3.7 empirically compares the performance of value iteration
and RTDP on a large game board (n = 1500) over 1 000 000 simulations. The quality
of the policies, measured in terms of the percentage of victories without the opponent
abandoning, is displayed as a function of the allotted planning time. The difference,
while not astounding, would still be welcomed in a time-critical context.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30

W
in

s
 (

%
)

Planning time (s)

Value Iteration
RTDP

Figure 3.7: Quality of plans as a function of the allotted planning time

107

3.5. Conclusion

This simple abandonment model could be further improved. For instance, the
abandonment could be probabilistic instead of deterministic. We could define a prob-
ability density function which specifies the probability of abandonment given the
position of both players.

3.4.2 Distance-Based Gaming Experience Model

Another user experience model that could be used is a distance-based one. Rather
than setting rewards on states which correspond to the end of the game, rewards can
be attributed on all states identified by Equation (3.11). The maximum reward
(0) is obtained when both players are in the same board position and it decreases
quadratically as the distance between both players increases.

R(si,j) = −(i− j)2 (3.11)

Since the goal is to maximize the user gaming experience, the finite time horizon
assumption may be not valid anymore. An infinite loop is now possible. For this
reason, the discount factor γ has to be set to a value γ < 1. This value is set to
weight the AI player’s preference between short-term and long-term rewards.

3.5 Conclusion

In this paper, we presented a modified version of the classic Snakes and Ladders
board game. This game is used in our introductory course in artificial intelligence
to teach Markov Decision Theory to undergraduate computer science students. Al-
though the game is simple, it contains many interesting aspects also present in more
complex computer games. This game offers several perspectives which require differ-
ent MDP formulations and strategies to generate optimal policies. The most complex
challenge is the generation of a policy which optimizes the gaming experience of a
human player.

As future work, we consider a few possible avenues to add new challenges for the
development of AI algorithms in this game framework. One of them is to use machine
learning techniques to automatically learn the opponent’s gaming experience model.

108

3.5. Conclusion

For instance, we could provide a database of previously-played games where each
game is associated with a score (win, loss, draw, abandonment, etc.) A model could
be learned from this history and then be integrated into the MDP policy generation
algorithm.

109

Chapitre 4

Planification des déplacements
d’un robot omnidirectionnel et non
holonome

Résumé
Les robots omnidirectionnels sont des robots qui peuvent se déplacer natu-

rellement dans toutes les directions, et ce, sans avoir à modifier leur orientation.
La modélisation de leur dynamique et leur contrôle représentent plusieurs défis.
Les mouvements de ces robots peuvent être modélisés relativement à un centre
instantané de rotation (ICR). Ainsi, le contrôle du robot peut être réalisé en
spécifiant un ICR et une vitesse de déplacement autour de ce dernier. L’article
présente un planificateur de mouvements pour générer des trajectoires effi-
caces pour ce type de robot dans des environnements contenant des obstacles
statiques. L’espace d’états est modélisé par un ICR et une posture. L’algo-
rithme de planification est basé sur l’exploration rapide d’arbres aléatoires, ou
Rapidly-Exploring Random Trees (RRT), qui échantillonne l’espace des actions
pour trouver une trajectoire reliant la configuration initiale à la configuration
désirée. Pour générer des trajectoires efficaces, la méthode d’échantillonnage
prend en considération des contraintes sur l’ICR afin de réduire les arrêts du
robot.

110

Commentaires
Cet article a été présenté à la IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS-2010) [22]. Les travaux ont été initiés
à la session d’hiver 2009, où Éric Beaudry et Froduald Kabanza ont encadré
Simon Chamberland et Daniel Castonguay dans le cadre d’un cours projet
au Département d’informatique. Le projet avait pour but d’identifier les ap-
proches et les algorithmes appropriés pour la planification de trajectoires pour
AZIMUT-3, un robot omnidirectionnel conçu au laboratoire IntRoLab de la
Faculté de génie de l’Université de Sherbrooke. Le projet a également mis à
contribution Lionel Clavien et Michel Lauria du laboratoire IntRoLab. Suite à
ce projet, une solution de planification de mouvements a été développée pour
le robot AZIMUT-3.

L’auteur de la présente thèse, Éric Beaudry, est le deuxième auteur de l’ar-
ticle. Il a participé à la direction des travaux, aux idées ainsi qu’à la rédaction
de l’article. Le projet a été supervisé par les professeurs Froduald Kabanza,
François Michaud et Michel Lauria. La contribution de cet article est complé-
mentaire aux trois premiers chapitres. Les approches de planification présentées
dans les premiers chapitres sont essentiellement des planificateurs de tâches.
Ils sont également basés sur des recherches dans des espaces d’états.

Généralement, dans une architecture robotique, la planification de tâches
et de trajectoires se font à l’aide de deux planificateurs distincts. Cette sé-
paration est souvent requise pour simplifier le problème de planification. Les
planificateurs de tâches et de trajectoires collaborent : le premier décide de
l’endroit où aller, alors que le second décide du chemin ou de la trajectoire à
emprunter. Comme indiqué dans l’introduction, pour planifier, un planificateur
de tâches a besoin de simuler les conséquences de ses actions. Par exemple, le
premier planificateur a besoin d’estimer la durée des déplacements. Une façon
d’estimer la durée des déplacements est de planifier une trajectoire pour ces
derniers.

111

Droits de reproduction
L’article présenté dans ce chapitre est une copie quasi intégrale de la version

publiée. Suite aux recommandations du jury, quelques modifications mineures
ont été apportées. Il est à noter que les droits de reproduction du matériel
présenté dans ce chapitre sont détenus par IEEE. En date du 5 mars 2011, une
permission de reproduction a été accordée à l’auteur par IEEE afin d’intégrer
l’article dans cette thèse. Cette permission permet à l’auteur, à l’Université de
Sherbrooke et à Bibliothèque et Archives Canada de distribuer des copies du
présent chapitre.

112

Motion Planning for an Omnidirectional Robot
With Steering Constraints 1

Simon Chamberland, Éric Beaudry, Froduald Kabanza
Département d’informatique, Université de Sherbrooke,

Sherbrooke, Québec, Canada J1K 2R1
simon.chamberland@usherbrooke.ca,

eric.beaudry@usherbrooke.ca, froduald.kabanza@usherbrooke.ca

Lionel Clavien, François Michaud
Département de génie électrique et de génie informatique,

Université de Sherbrooke,
Sherbrooke, Québec, Canada J1K 2R1

lionel.clavien@usherbrooke.ca,
francois.michaud@usherbrooke.ca

Michel Lauria
University of Applied Sciences Western Switzerland (HES-SO),

Genève, Suisse
michel.lauria@hesge.ch

Abstract

Omnidirectional mobile robots, i.e., robots that can move in any direction
without changing their orientation, offer better manoeuvrability in natu-
ral environments. Modeling the kinematics of such robots is a challenging
problem and different approaches have been investigated. One of the best
approaches for a nonholonomic robot is to model the robot’s velocity state
as the motion around its instantaneous center of rotation (ICR). In this pa-
per, we present a motion planner designed to compute efficient trajectories
for such a robot in an environment with obstacles. The action space is mod-
eled in terms of changes of the ICR and the motion around it. Our motion
planner is based on a Rapidly-Exploring Random Trees (RRT) algorithm to

1. c© 2010 IEEE. Reprinted, with permission from Simon Chamberland, Éric Beaudry, Froduald
Kabanza, Simon Chamberland, Lionel Clavien, François Michaud, and Michel Lauria, Motion Plan-
ning for an Omnidirectional Robot With Steering Constraints, IEEE/RSJ International Conference
on Intelligent Robots and Systems, October 2010.

113

sample the action space and find a feasible trajectory from an initial con-
figuration to a goal configuration. To generate fluid paths, we introduce an
adaptive sampling technique taking into account constraints related to the
ICR-based action space.

114

4.1. Introduction

4.1 Introduction

Many real and potential applications of robots include exploration and operations
in narrow environments. For such applications, omnidirectional mobile platforms
provide easier manoeuvrability when compared to differential-drive or skid-steering
platforms. Omnidirectional robots can move sideways or drive on a straight path
without changing their orientation. Translational movement along any desired path
can be combined with a rotation, so that the robot arrives to its destination with the
desired heading.

Our interest lies in nonholonomic omnidirectional wheeled platforms, which are
more complex to control than holonomic ones. This complexity stems from the fact
that they cannot instantaneously modify their velocity state. Nevertheless, nonholo-
nomic robots offer several advantages motivating their existence. For instance, the
use of conventional steering wheels reduces their cost and results in a more reliable
odometry, which is important for many applications. Our work is centered around
AZIMUT-3, the third prototype of AZIMUT [50, 37], a multi-modal nonholonomic
omnidirectional platform. The wheeled configuration of AZIMUT-3, depicted on Fig-
ure 4.1, is equipped with four wheels constrained to steer over a 180̊ range, and a
passive suspension mechanism.

There are different approaches to control the kinematics of a wheeled omnidi-
rectional robot. For AZIMUT, we chose to model the velocity state by the motion
around the robot’s instantaneous center of rotation (ICR) [20]. The ICR is defined
as the unique point in the robot’s frame which is instantaneously not moving with
respect to the robot. For a robot using conventional steering wheels, this corresponds
to the point where the propulsion axis of each wheel intersect.

The robot’s chassis represents a physical constraint on the rotation of the wheels
around their steering axis. These constraints introduce discontinuities on the steering
angle of some wheels when the ICR moves continuously around the robot. In fact, a
small change of the ICR position may require reorienting the wheels, such that at least
one wheel has to make a full 180̊ rotation. This rotation takes some time, depending
on the steering axis’ maximum rotational speed. During such wheel reorientation,
the ICR is undefined, and because the robot is controlled through its ICR, it must

115

4.1. Introduction

Figure 4.1: The AZIMUT-3 platform in its wheeled configuration

be stopped until the wheel reorientation is completed and the new ICR is reset.
As a solution, a motion planner for an ICR-based motion controller could return

a trajectory avoiding wheel reorientations as much as possible, in order to optimize
travel time and keep fluidity in the robot’s movements. One way to achieve this is to
use a traditional obstacle avoidance path planner ignoring the ICR-related kinematic
constraints, and then heuristically smoothing the generated path to take into account
the constraints that were abstracted away. This is in fact one of the approaches
used to reduce intrinsically nonholonomic motion planning problems to holonomic
ones [39].

However, we believe this approach is not well suited for AZIMUT, as we would
prefer to perform a global optimization of the trajectories, instead of optimizing a
potentially ill-formed path. To this end, we chose to investigate another approach
which takes directly into account the kinematic constraints related to the ICR and
to the robot’s velocity. The action space of the robot is modeled as the space of
possible ICR changes. We adopt a Rapidly-Exploring Random Trees (RRT) planning
approach [38, 35, 39] to sample the action space and find a feasible trajectory from

116

4.2. Velocity State of AZIMUT

an initial configuration to a goal configuration. To generate fluid paths, we introduce
an adaptive sampling technique taking into account the constraints related to the
ICR-based action space.

The rest of the paper is organized as follows. Sect. 4.2 describes the velocity state
of AZIMUT-3 and Sect. 4.3 characterizes its state space. Sect. 4.4 presents a RRT-
based motion planner which explicitly considers the steering limitations of the robot,
and Sect. 4.5 concludes the paper with simulation results.

4.2 Velocity State of AZIMUT

Two different approaches are often used to describe the velocity state of a robot
chassis [20]. The first one is to use its twist (linear and angular velocities) and is
well adapted to holonomic robots, because their velocity state can change instantly
(ignoring the maximum acceleration constraint). However, this representation is not
ideal when dealing with nonholonomic robots, because their instantaneously accessible
velocities from a given state are limited (due to the non-negligible reorientation time
of the steering wheels). In these cases, modeling the velocity state using the rotation
around the current ICR is preferred.

As a 2D point in the robot frame, the ICR position can be represented using two
independent parameters. One can use either Cartesian or polar coordinates to do
so, but singularities arise when the robot moves in a straight line manner (the ICR
thus lies at infinity). An alternative is to represent the ICR by its projection on a
unit sphere tangent to the robot frame at the center of the chassis [23]. This can
be visualized by tracing a line between the ICR in the robot frame and the sphere
center. Doing so produces a pair of antipodal points on the sphere’s surface, as
shown on Figure 4.4. Using this representation, an ICR at infinity is projected onto
the sphere’s equator. Therefore, going from one near-infinite position to another (e.g.,
when going from a slight left turn to a slight right turn) simply corresponds to an
ICR moving near the equator of the sphere. In the following, we define λλλ = (u; v;w)
as the 3D Cartesian position of the ICR on the sphere [23] and µ ∈ [−µmax;µmax]
as the motion around that ICR, with µmax being the fastest allowable motion. The
whole velocity state is then defined as ηηη = (λλλ;µ).

117

4.2. Velocity State of AZIMUT

(a) ICR at (0.8; 0.43) (b) ICR at (0.8; 0.51)

Figure 4.2: ICR transition through a steering limitation. Observe the 180̊ rotation
of the lower right wheel.

AZIMUT has steering limitations for its wheels. These limitations define the
injectivity of the relation between ICR (λλλ) and wheel configurations (βββ, the set of
all N steering angles). If there is no limitation, one ICR corresponds to 2N wheel
configurations, where N ≥ 3 is the number of steering wheels. If the limitation is
more than 180̊ , some ICR are defined by more than one wheel configuration. If the
limitation is less than 180̊ , some ICR cannot be defined by a wheel configuration.
It is only when the limitation is of 180̊ , as it is the case with AZIMUT, that the
relation is injective: for each given ICR, there exists a unique wheel configuration.

Those limitations can hinder the motion of the ICR. Indeed, each limitation creates
a frontier in the ICR space. When a moving ICR needs to cross such a frontier, one of
the wheel needs to be “instantly” rotated by 180̊ . One example of such a situation for
AZIMUT-3 is shown on Figure 4.2. To facilitate understanding, the ICR coordinates
are given in polar form. As the ICR needs to be defined to enable motion, the robot
has to be stopped for this rotation to occur. As shown on Figure 4.3, the set of all
limitations splits up the ICR space into several zones, and transitions between any of
these zones are very inefficient. In the following, we refer to these ICR control zones
as “modes”.

118

4.3. Planning State Space

30

60

90

120

150

180

210

240

270

300

330

3603 11

2

2

45

6 7

Figure 4.3: Different control zones (modes) induced by the steering constraints. The
dashed square represents the robot without its wheels.

4.3 Planning State Space

The representation of states highly depends on the robot to control. A state sss ∈ S
of AZIMUT-3 is expressed as sss = (ξξξ;λλλ), where ξξξ = (x; y; θ) ∈ SE(2) represents the
posture of the robot and λλλ is its current ICR, as shown on Figure 4.4.

As mentioned in Sect. 4.2, the ICR must be defined at all times during motion
for the robot to move safely. Keeping track of the ICR instead of the steering axis
angles therefore prevents expressing invalid wheel configurations. Since the relation
λλλ 7→ βββ is injective, any given ICR corresponds to a unique wheel configuration, which
the motion planner can disregard by controlling the ICR instead. Because AZIMUT
can accelerate from zero to its maximal speed in just a few tenths of a second, the
acceleration is not considered by the planner. Thus, instantaneous changes in velocity
(with no drift) are assumed, which is why the current velocity of the robot is not
included in the state variables.

A trajectory σ is represented as a sequence of n pairs ((uuu1,∆t1), . . . , (uuun,∆tn))

119

4.4. Motion Planning Algorithm

Figure 4.4: State parameters. R(0; 0; 1) is the center of the chassis.

where uiuiui ∈ U is an action vector applied for a duration ∆ti. In our case, the action
vector corresponds exactly to the velocity state to transition to: uuu = ηηηu = (λλλu;µu),
respectively the new ICR to reach and the desired motion around that ICR.

It is necessary to have a method for computing the new state s′s′s′ arising from
the application of an action vector uuu for a certain duration ∆t to a current state sss.
Since the state transition equation expressing the derivatives of the state variables is
non-linear and complex, we use AZIMUT’s kinematical simulator as a black box to
compute new states. The simulator implements the function K : S × U → S = s′s′s′ 7→
K(sss,uuu) via numerical integration.

4.4 Motion Planning Algorithm

Following the RRT approach [38, 35], our motion planning algorithm (Alg. 11)
expands a search tree of feasible trajectories until reaching the goal. The initial state
of the robot sssinit is set as the root of the search tree. At each iteration, a random
state sssrand is generated (Line 4). Then its nearest neighboring node sssnear is computed
(Line 5), and an action is selected (Line 6) which, once applied from sssnear, produces

120

4.4. Motion Planning Algorithm

an edge extending toward the new sample sssrand. A local planner (Line 7) then finds
the farthest collision-free state sssnew along the trajectory generated by the application
of the selected action. The problem is solved whenever a trajectory enters the goal
region, Cgoal. As the tree keeps growing, so does the probability of finding a solution.
This guarantees the probabilistic completeness of the approach.

Algorithm 11 RRT-Based Motion Planning Algorithm

1. RRT-Planner(sssinit, sssgoal)
2. T.init(sinitsinitsinit)
3. repeat until time runs out
4. sssrand ← GenerateRandomSample()
5. sssnear ← SelectNodeToExpand(sssrand, T)
6. (uuu,∆t)← SelectAction(sssrand, sssnear)
7. sssnew ← LocalP lanner(sssnear,uuu,∆t)
8. add snewsnewsnew to T.Nodes
9. add (sssnear, sssnew,uuu) to T.Edges
10. if Cgoal is reached
11. return Extract-trajectory(sssnew)
12. return failure

The fundamental principle behind RRT approaches is the same as probabilistic
roadmaps [58]. A naïve state sampling function (e.g., uniform sampling of the state
space) loses efficiency when the free space Cfree contains narrow passages – a nar-
row passage is a small region in Cfree in which the sampling density becomes very
low. Some approaches exploit the geometry of obstacles in the workspace to adapt
the sampling function accordingly [62, 36]. Other approaches use machine learning
techniques to adapt the sampling strategy dynamically during the construction of the
probabilistic roadmap [19, 34].

For the ICR-based control of AZIMUT, we are not just interested in a sampling
function guaranteeing probabilistic completeness. We want a sampling function that
additionally improves the travel time and motion fluidity. The fluidity of the trajec-
tories is improved by minimizing:

– the number of mode switches;
– the number of reverse motions, i.e., when the robot goes forward, stops, then
backs off. Although these reverse motions do not incur mode switches, they are
obviously not desirable.

121

4.4. Motion Planning Algorithm

4.4.1 Goal and Metric

The objective of the motion planner is to generate fluid and time-efficient trajecto-
ries allowing the robot to reach a goal location in the environment. Given a trajectory
σ = ((uuu1,∆t1), . . . , (uuun,∆tn)), we define reverse motions as consecutive action pairs
(uuui,uuui+1) where |τi− τi+1| ≥ 3π

4 , in which τi = arctan(λλλv,i,λλλu,i)− sign(µi)π2 represents
the approximate heading of the robot. Let (sss0, . . . , sssn) denote the sequence of states
produced by applying the actions in σ from an initial state sss0. Similarly, we define
mode switches as consecutive state pairs (sssi, sssi+1) where mode(λi) 6= mode(λi+1). To
evaluate the quality of trajectories, we specify a metric q(σ) to be minimized as

q(σ) = t+ c1m+ c2r (4.1)

where c1, c2 ∈ R+ are weighting factors; t, m and r are, respectively, the duration, the
number of mode switches and the number of reverse motions within the trajectory σ.

4.4.2 Selecting a Node to Expand

Line 4 of Alg. 11 generates a sample sssrand at random from a uniform distribution.
As it usually allows the algorithm to find solutions faster [39], there is a small
probability Pg of choosing the goal state instead.

Line 5 selects an existing node sssnear in the tree to be extended toward the new
sample sssrand. Following a technique introduced in [32], we alternate between two
different heuristics to choose this node.

Before a feasible solution is found, the tree is expanded primarily using an ex-
ploration heuristic. This heuristic selects for expansion the nearest neighbor of the
sample sssrand, as the trajectory between them will likely be short and therefore require
few collision checks. Hence sssnear = arg min

sssi∈T.Nodes
Dexp(sssi, sssrand).

The distance metric used to compute the distance between two states sss1 and sss2

122

4.4. Motion Planning Algorithm

is specified as

Dexp(sss1, sss2) =
√

(x2 − x1)2 + (y2 − y1)2

+ 1
π
|θ2 − θ1|

+ 1
2π

∑
j∈[1;4]

|β2,j − β1,j|

(4.2)

which is the standard 2D Euclidean distance extended by the weighted sum of the
orientation difference and the steering angles difference.

This heuristic is often used in the RRT approach as it allows the tree to rapidly
grow toward the unexplored portions of the state space. In fact, the probability that
a given node be expanded (chosen as the nearest neighbor) is proportional to the
volume of its Voronoi region [63]. Nodes with few distant neighbors are therefore
more likely to be expanded.

Once a solution has been found, more emphasis is given to an optimization heuris-
tic which attempts to smooth out the generated trajectories. We no longer select the
sample’s nearest neighbor according to the distance metric Dexp (4.2). Instead, nodes
are sorted by the weighted sum of their cumulative cost and their estimated cost to
sssrand. Given two samples sss1 and sss2, we define this new distance as:

Dopt(sss1, sss2) = q(σs1) + c3 h
2(sss1, sss2) (4.3)

where q(σs1) is the cumulative cost of the trajectory from the root configuration to
sss1 (see (4.1)), h(sss1, sss2) is the estimated cost-to-go from sss1 to sss2, and c3 ∈ R+ is a
weighting factor. We select sssnear as the node with the lowest distance Dopt to sssrand,
or more formally sssnear = arg min

sssi∈T.Nodes
Dopt(sssi, sssrand).

We set h(sss1, sss2) as a lower bound on the travel duration sss1 to sss2, which is found
by computing the time needed to reach sss2 via a straight line at maximum speed, i.e.

h(sss1, sss2) =
√

(x2 − x1)2 + (y2 − y1)2/µmax (4.4)

Since h(sss1, sss2) is a lower bound, the cumulative cost q(σs1) and the cost-to-go h(sss1, sss2)
cannot contribute evenly to the distance Dopt(sss1, sss2). If this was the case, the closest

123

4.4. Motion Planning Algorithm

node (in the Dopt sense) to an arbitrary node sssj would always be the root node, as

h(sssroot, sssj) ≤ q(σsi
) + h(sssi, sssj) ∀sssi, sssj (4.5)

Instead, we give h(sss1, sss2) a quadratic contribution to the total distance. This is meant
to favor the selection of relatively close nodes, as the total cost rapidly increases with
the distance.

When the objective is to find a feasible solution as quickly as possible, the opti-
mization heuristic (4.3) is not used and the algorithm rather relies on the standard
exploration heuristic (4.2). On the other hand, when the algorithm is allocated a
fixed time window, it uses both heuristics at the same time. Indeed, prior to finding
a solution, the exploration heuristic has a higher likelihood of being chosen, while the
optimization heuristic is selected more often once a solution has been found. Com-
bining both heuristics is useful, as performing optimization to improve the quality
of the trajectories can be beneficial even before a solution is found. Similarly, using
the exploration heuristic once a solution has been computed can sometimes help in
finding a shortest path which was initially missed by the algorithm.

4.4.3 Selecting an Action

Line 6 of Alg. 11 selects an action uuu with a duration ∆t which, once applied
from the node sssnear, hopefully extends the tree toward the target configuration sssrand.
Obstacles are not considered here.

Since we know more or less precisely the trajectory followed by the robot when a
certain action uuu is given, we can sample the action space with a strong bias toward
efficient action vectors. Note that the robot’s velocity µu should be reduced in the
immediate vicinity of obstacles. For now, we disregard this constraint as we always
set µu = ±µmax, which instructs the robot to constantly travel at its maximum
velocity. Additionally, we do not require the robot’s orientation θ to be tangent to
the trajectory.

Let pppnear = (xnear; ynear) and ppprand = (xrand; yrand) be the coordinates of the chassis
position of respectively sssnear and sssrand. Given pppnear and ppprand, we can draw an infinite
number of circles passing through the two points. Each circle expresses two different

124

4.4. Motion Planning Algorithm

curved trajectories (two exclusive arcs) which can be followed by the robot to connect
to the target configuration, assuming the robot’s wheels are already aligned toward
the circle’s center. In this context, the sign of µu determines which arc (the smallest
or the longest) the robot will travel on. All the centers of these circles lie on the
bisector of the [pppnear;ppprand] segment, which can be expressed in parametric form as

lλ(k) = 1
2(pppnear − ppprand) + kvvv (4.6)

where vvv · (pppnear − ppprand) = 0. This line therefore represents the set of ICR allowing a
direct connection to the target configuration.

However, some of these ICR should be preferred over others, to avoid mode
switches whenever possible. For this purpose, we restrain lλ to the segment en-
closing all ICR in the same mode as the source ICR, i.e., we find all k where
mode(lλ(k)) = mode(λλλnear). Doing so involves computing the intersection between
lλ and the four lines delimiting the different modes (see Figure 4.3). If such a seg-
ment exists, we can sample directly a value ku ∈]kmin; kmax[and set λλλu = lλ(ku),
an acceptable ICR which avoids switching to another mode. However, this approach
is not adequate, as all 2D points along the segment have equal likelihood of being
selected. Indeed, we would prefer faraway points to have less coverage, since each of
them corresponds to negligible variations of the wheel angles, and therefore negligible
variations of the trajectories.

We address this problem by sampling an ICR on the unit sphere instead (depicted
on Figure 4.4). This is achieved by projecting the line segment on the sphere, which
yields an arc of a great circle that can be parameterized by an angle λ = λ(φ), where
φ ∈ [φmin;φmax]. We then sample uniformly φu = Un(φmin, φmax), from which we
compute directly the desired ICR λu = λ(φu). By considering the relation between
this angle and its corresponding point back on the global plane, one can see that the
farther the point lies from the robot, the less likely it is to be selected. Sampling an
angle along a great circle instead of a point on a line segment therefore provides a
more convenient ICR probability distribution.

Since we determined the values of λu and |µu|, what remains to be decided are
the sign of µu and ∆t, the duration of the trajectory. The sign of µu is simply set

125

4.5. Results

as to always generate motions along the smallest arc of circle. We then calculate the
duration of the path as the time needed to connect from pppnear to ppprand along this arc
of circle centered at λλλu, given |µu| = µmax.

An overview of the algorithm is presented in Alg. 12. Note that besides intro-
ducing an additional probability Pl of generating straight lines, we allowed “naïve”
sampling to take place with a finite probability Pn, i.e., sampling an ICR without any
consideration for the modes.

Algorithm 12 SelectAction Algorithm

1. SelectAction(sssrand, sssnear)
2. if Un(0, 1) < Pl
3. λλλu ← (u; v; 0) the ICR lying at infinity
4. else
5. find lλ(k) = kvvv +mmm
6. project lλ(k) on the sphere, yielding λ(θ) = (u, v, w)
7. if Un(0, 1) < Pn
8. λλλu ← λ(Un(0, π))
9. else
10. find [θmin, θmax] such that

∀θ∈[θmin,θmax]mode(λ(θ)) = mode(λλλsnear)
11. if @θ|mode(λ(θ)) = mode(λλλsnear)
12. λλλu ← λ(Un(0, π))
13. else
14. λλλu ← λ(Un(θmin, θmax))
15. µu ← ±µmax depending on λλλu
16. ∆t← time to reach sssrand when following the circle arc
17. return (λλλu;µu) and ∆t

4.5 Results

Pending implementation on AZIMUT, experiments were performed within the
OOPSMP 2 [55] library. Since the actual robot and our simulator both use the same
kinematical model to compute the robot’s motion, we expect the results obtained in
simulation to be somewhat similar to real-world scenarios.

Table 4.1 summarizes the values used for the parameters described in (4.1), (4.3)
and the different probabilities. The weighting factors c1 and c2 were both set to

2. http://www.kavrakilab.rice.edu

126

4.5. Results

Table 4.1: Parameters used
q(σ) (4.1) Dopt (4.3)

c1 c2 c3 Pg Pl Pn

2.5 2.5 0.5 0.025 0.25 0.1

(a) Env #1 (5 sec-
onds)

(b) Env #2 (10 sec-
onds)

(c) Env #3 (25 sec-
onds)

(d) Env #4 (20 sec-
onds)

Figure 4.5: Environments and time allocated for each query

2.5, which means every mode switch or reverse motion contributes an additional 2.5
seconds to the total cost. The exploration heuristic is selected 70% of the time prior
to finding a solution, and 20% of the time after a solution has been found.

We compared our approach with a “naïve” algorithm ignoring mode switches
and reverse motions. This naïve algorithm is a degenerate case of our main one, in
the sense that it minimizes the metric (4.1) under the special condition c1 = c2 =
0 (duration only), and always selects an action naïvely, i.e., with Pn = 1. Other
parameters remain the same.

An Intel Core 2 Duo 2.6 GHz with 4 GB of RAM was used for the experiments.
The results are presented in Table 4.2. Exactly 50 randomly generated queries had to
be solved within each environment, with a fixed time frame allocated for each query.
However, the time allocated was not the same for each environment, as some are more
complicated than others (see Figure 4.5) and we wanted to maximize the number of
queries successfully solved.

The results show that the biased algorithm outperformed the naïve one on all
environments. Indeed, by minimizing the number of mode switches and reverse mo-
tions, the biased algorithm not only improves the fluidity of the trajectories, but also

127

4.5. Results

Table 4.2: Comparison of a naïve algorithm and our proposed solution
Algorithm Travel Time Mode switches Reverse motions Metric

evalua-
tion (4.1)

Env #1 Naïve 36.36 4.71 0.71 49.91
Biased 32.41 2.65 0.46 40.19

Env #2 Naïve 38.09 6.46 0.46 55.39
Biased 33.46 3.41 0.45 43.11

Env #3 Naïve 48.70 12.96 1.19 84.08
Biased 45.18 10.48 1.92 76.18

Env #4 Naïve 60.42 5.18 0.84 75.47
Biased 51.72 3.29 0.52 61.25

(a) Trajectory using a com-
pletely random sampling

(b) Trajectory using a naïve
sampling

(c) Trajectory using our pro-
posed sampling

Figure 4.6: Comparison of trajectories created by a random, a naïve, and a biased
algorithms

decreases the average travel time. In heavily cluttered environments like Env #3,
feasible trajectories are impaired by a large number of mode switches. To avoid these
mode switches, the biased algorithm had to increase the number of reverse motions,
which explains the slightly worse result for this particular element. Figure 4.6 presents
examples of typical trajectories generated by the different algorithms, including an
algorithm selecting an ICR randomly. However, it is important to note that our al-
gorithm does not always produce good-looking trajectories, as guarantees of quality
are hard to obtain via nondeterministic approaches.

128

4.6. Conclusion

4.6 Conclusion

A new RRT-based algorithm for the motion planning of nonholonomic omnidi-
rectional robots has been presented. It has been shown that by taking explicitly
into account the kinematic constraints of such robots, a motion planner could greatly
improve the fluidity and efficiency of trajectories.

We plan to expand our RRT-based motion planner to constrain the orientation of
the robot’s chassis, and to adapt the robot’s velocity according to the proximity with
obstacles. We are also interested in computing a robust feedback plan so that the
robot does not deviate too much from the planned trajectory, despite the inevitable
real world unpredictability. For AZIMUT, this would involve the additional challenge
of making sure the ICR stays as far as possible from the control zones frontiers, as to
avoid undesired mode switches. Future work will integrate these additional elements.

Acknowledgments

This work is funded by the Natural Sciences and Engineering Research Council
of Canada, the Canada Foundation for Innovation and the Canada Research Chairs.
F. Michaud holds the Canada Research Chair in Mobile Robotics and Autonomous
Intelligent Systems.

129

Conclusion

Les travaux présentés dans cette thèse s’inscrivent dans le domaine de la plani-
fication en intelligence artificielle (IA). L’objectif de ces travaux était d’améliorer la
prise de décisions pour une classe de problèmes de planification particulière, soit celle
qui combine des actions concurrentes (simultanées) et de l’incertitude. Bien que ces
deux aspects ont été largement étudiés séparément, leur combinaison représente des
défis considérables.

La classe de problèmes ciblée est motivée par de nombreuses applications réelles.
La robotique mobile est un exemple de systèmes intelligents nécessitant une telle
capacité. En effet, les robots mobiles évoluent généralement dans des environnements
dynamiques et incertains. Lorsqu’ils doivent interagir avec des humains, les actions des
robots peuvent avoir des durées incertaines. De plus, ils peuvent souvent exécuter des
actions simultanées afin d’être plus efficaces. Cette classe de problèmes a également
été identifiée par la NASA comme étant très importante pour la planification des
actions des robots déployés sur Mars.

Plusieurs contributions significatives ont été présentées dans cette thèse. Au mo-
ment de sa rédaction, une portion importante de celles-ci ont notamment fait l’objet
de publications à des conférences scientifiques, dont l’une à l’International Conference
on Automated Planning and Scheduling (ICAPS) qui est considérée comme la confé-
rence la plus spécialisée dans le domaine.

Le premier chapitre a présenté ActuPlan qui est basé sur une nouvelle approche
de planification. Cette contribution apporte des solutions à des problèmes de planifi-
cation avec de l’incertitude lié au temps (durée des actions) et aux ressources (consom-
mation et production de ressources). La solution proposée utilise une représentation
compacte d’états basée sur un modèle continu de l’incertitude. En effet, des variables

130

Conclusion

aléatoires continues, organisées dans un réseau bayésien construit dynamiquement,
sont utilisées pour modéliser le temps et l’état des ressources. ActuPlannc, le pre-
mier planificateur présenté, permet de générer des plans non conditionnels qui sont
quasi optimaux optimaux. Ce planificateur a été modifié pour générer un ensemble de
plans non conditionnels. Ces plans non conditionnels sont ensuite fusionnés en un plan
conditionnel qui retarde certaines décisions au moment de l’exécution. Les conditions
de branchement sont établies en conditionnant l’espérance de variables aléatoires.

En plus d’être efficace, la méthode proposée procure plusieurs avantages. Par
exemple, contrairement aux approches entièrement basées sur des processus décision-
nels markovien (MDP) qui nécessitent une hypothèse markovienne, soit l’indépen-
dance de chaque décision, l’approche proposée offre une plus grande flexibilité sur la
modélisation de la dépendance (ou l’indépendance) entre les diverses sources d’incer-
titude. En effet, puisqu’elle exploite un réseau bayésien, il est possible d’ajouter des
dépendances entre les variables aléatoires afin d’être plus fidèle à la réalité.

La deuxième contribution présentée est une généralisation d’ActuPlan à plu-
sieurs formes d’incertitude, incluant celle sur les effets des actions. Celle-ci a mené à
la conception du planificateur QuanPlan, un planificateur hybride qui est basé sur
deux fondements bien établis en IA. Tandis que l’incertitude sur le temps est prise en
charge par un réseau bayésien, l’incertitude sur les effets des actions est prise en charge
par un MDP. Afin de modéliser des effets indéterminés, une notion d’état quantique
a été introduite. Cette représentation permet de modéliser des superpositions d’états
dont leur détermination est retardée au moment de leur observation.

Les nouvelles techniques de planification présentées dans cette thèse ont été va-
lidées sur deux domaines d’applications, soit les domaines de transport et des Mars
rovers qui sont utilisés lors des International Planning Competitions qui ont lieu aux
deux ou trois ans lors des conférences ICAPS. Ces derniers ont été modifiés afin d’in-
troduire de l’incertitude au niveau de la durée des actions et ainsi que sur les effets.
Bien que ces domaines soient artificiels, ils renferment des caractéristiques fondamen-
tales d’applications réelles.

Cette thèse a également exploré un contexte d’application différent, soit celui des
jeux. Ce volet est une contribution à l’application de techniques d’IA dans les jeux.
Les jeux représentent une autre application où la prise de décisions automatique est

131

Conclusion

importante. De plus, l’incertitude et des actions simultanées sont souvent des aspects
importants dans les jeux. Les solutions qui ont été présentées permettent à un joueur
artificiel de prendre des actions selon plusieurs critères. Par exemple, les décisions
peuvent être orientées pour compléter le plus rapidement possible le jeu ou pour
vaincre un adversaire. Des décisions plus complexes ont également été abordées afin
de s’adapter automatiquement au niveau de l’adversaire.

Une autre contribution a été présentée dans le domaine de la planification de
trajectoires pour des robots omnidirectionnels. Celle-ci est complémentaire aux pré-
cédentes qui portent sur la planification d’actions. Le problème de prise de décisions
étant généralement très complexe, celui-ci est généralement décomposé. Ainsi, au lieu
de réaliser un seul planificateur pour la planification des actions et des trajectoires,
deux planificateur distincts sont généralement mis à contribution.

Les travaux présentés dans cette thèse ouvrent la porte à de nouvelles possibi-
lités pour diverses applications qui ont besoin de capacités d’autonomie et de prise
de décisions. En plus de la robotique mobile et des jeux, d’autres applications pour-
raient en bénéficier. Par exemple, certains systèmes d’aide à la décision utilisent la
planification pour recommander des actions à prendre. La concurrence d’actions et
l’incertitude sont des aspects omniprésents dans bon nombre d’applications. Jusqu’à
présent, beaucoup de systèmes intelligents font abstraction de ces aspects puisque
leur considération est trop complexe. Ainsi, les avancées présentées dans cette thèse
pourraient repousser les limites de ces applications en améliorant la prise de décisions
sous incertitude.

Comme travaux futurs, les algorithmes de planification présentés peuvent être
intégrés dans une application réelle. En effet, il est prévu de les intégrer dans le ro-
bot Johny-0 en vue d’une éventuelle participation à la compétition RobotCup@Home.
Bien qu’ils sont à déterminer, les scénarios envisagés renferment de l’incertitude et
contiennent potentiellement des actions concurrentes. L’intégration de QuanPlan
dans un robot comporte plusieurs défis, comme la spécification automatique des dis-
tributions de probabilités. En effet, le robot pourrait apprendre automatiquement le
modèle probabiliste de la durée des actions. De plus, durant l’exécution, une esti-
mation en continu des durées d’actions pourrait accroitre la fiabilité du module de
surveillance des plans.

132

Conclusion

Bien que cette thèse présente des avancées pour une classe de problèmes de pla-
nification très précise, le problème de prise de décisions en intelligence artificielle
demeure un important thème de recherche. L’intégration des algorithmes de plani-
fication dans des applications réelles, tels des robots mobiles, peut se heurter à de
nombres obstacles. En effet, comme indiqué dans l’introduction, les algorithmes de
planification exigent un certain nombre d’hypothèses simplificatrices. Les travaux pré-
sentés dans cette thèse n’y font pas exception. Les hypothèses simplificatrices étant
souvent contraignantes, des ajustements et des stratégies d’intégration sont généra-
lement requis afin que les algorithmes de planification puissent être appliqués à des
problématiques réelles [11]. Les hypothèses simplificatrices peuvent également limiter
l’applicabilité des planificateurs. Quelques pistes d’amélioration sont présentés.

L’indissociabilité d’une mission (but) est l’une des hypothèses requises des algo-
rithmes présentés dans cette thèse. Une mission étant parfois impossible à réaliser
en raison des contraintes sur les ressources et le temps, un planificateur doit sélec-
tionner un sous-ensemble de buts en plus de générer un plan. Plusieurs travaux sur
la satisfaction partielle [60] des buts pourraient servir d’inspiration pour améliorer
QuanPlan.

La réactivité représente une autre limite de QuanPlan. En effet, ce planifica-
teur est avant tout construit pour résoudre des problèmes de façon hors-ligne (off-line
planning). Ce planificateur pourrait être amélioré en utilisant des techniques de pla-
nification en tout temps (anytime planning) [42].

La stabilité des plans est une caractéristique généralement souhaitée. Dans des
environnements dynamiques, et où les buts peuvent évoluer avec le temps, le planifi-
cateur doit éviter de changer radicalement ses plans lors de la replanification. Il existe
plusieurs façons de mesurer la stabilité des plans, comme de compter le nombre d’ac-
tions modifiées [30]. Cette métrique pourrait être modifiée pour considérer d’autres
facteurs, comme des contraintes sur des engagements pris suite à un premier plan.

Bien que QuanPlan prenne en charge l’incertitude liée aux actions elles-mêmes,
l’hypothèse d’observabilité totale demeure requise. Dans les applications réelles, cette
hypothèse n’est pas toujours réaliste à cause de l’imperfection des capteurs. Il est pos-
sible d’améliorer QuanPlan en s’inspirant de travaux sur les processus décisionnels
markoviens avec observation partielle (POMDP) [54].

133

Bibliographie

[1] M. Ai-Chang, J. Bresina, L. Charest, J. Hsu, A. K. Jonsson,
B. Kanefsky, P. Maldague, P. Morris, K. Rajan et J. Yglesias.
« MAPGEN : Mixed-initiative Planning and Scheduling for the Mars Explora-
tion Rover Missions ».
Intelligent Systems, 19(1):8–12, 2004.

[2] F. Bacchus et M. Ady.
« Planning with Resources and Concurrency : A Forward Chaining Approach ».
Dans Proc. of the International Joint Conference on Artificial Intelligence, pages
417–424, 2001.

[3] B. W. Ballard.
« The *-Minimax Search Procedure for Trees Containing Chance Nodes ».
Artificial Intelligence, 21(3):327–350, 1983.

[4] A. Bar-Noy et B. Schieber.
« The Canadian Traveller Problem ».
Dans Proc. of the ACM-SIAM symposium on Discrete algorithms, pages 261–270.
Society for Industrial and Applied Mathematics, 1991.

[5] A.G. Barto, S.J. Bradtke et S.P. Singh.
« Learning to Act Using Real-Time Dynamic Programming ».
Artificial Intelligence, 72(1–2):81–138, 1995.

[6] É. Beaudry, F. Bisson, S. Chamberland et F. Kabanza.
« Using Markov Decision Theory to Provide a Fair Challenge in a Roll-and-Move
Board Game ».
Dans Proc. of the IEEE Computational Intelligence and Games, 2010.

134

Bibliographie

[7] É. Beaudry, Y. Brosseau, C. Côté, C. Raïevsky, D. Létourneau,
F. Kabanza et F. Michaud.
« Reactive Planning in a Motivated Behavioral Architecture ».
Dans Proc. of the National Conference on Artificial Intelligence (AAAI), pages
1242–1249, 2005.

[8] É. Beaudry, F. Kabanza et F. Michaud.
« Planning for a Mobile Robot to Attend a Conference ».
Dans Proc. of the Advances in Artificial Intelligence (Canadian Conference on
AI), pages 48–52, 2005.

[9] É. Beaudry, F. Kabanza et F. Michaud.
« Planning for Concurrent Action Executions Under Action Duration Uncer-
tainty Using Dynamically Generated Bayesian Networks ».
Dans Proc. of the International Conference on Automated Planning and Schedu-
ling, pages 10–17, 2010.

[10] É. Beaudry, F. Kabanza et F. Michaud.
« Planning with Concurrency under Resources and Time Uncertainty ».
Dans Proc. of the European Conference on Artificial Intelligence, pages 217–222,
2010.

[11] É. Beaudry, D. Létourneau, F. Kabanza et F. Michaud.
« Reactive Planning As a Motivational Source in a Behavior-Based Architec-
ture ».
Dans IEEE/RSJ International Conference on Intelligent Robots and Systems,
2008.

[12] R. E. Bellman.
Dynamic Programming.
Princeton University Press, Princeton, NJ, 1957.

[13] A. Benaskeur, F. Kabanza et É. Beaudry.
« CORALS : A Real-Time Planner for Anti-Air Defence Operations ».
ACM Transactions on Intelligent Systems and Technology, 1(2):1–21, 2010.

[14] A. Benaskeur, F. Kabanza, É. Beaudry et M. Beaudoin.
« A Probabilistic Planner for the Combat Power Management Problem ».

135

Bibliographie

Dans Proc. of the International Conference on Automated Planning and Schedu-
ling, pages 12–19, 2008.
Sept, 22-26, 2008, Acropolis Convention Center, Nice, France.

[15] B. Bonet et H. Geffner.
« Planning As Heuristic Search ».
Artificial Intelligence, 129:5–33, 2001.

[16] B. Bonet et H. Geffner.
« Labeled RTDP : Improving the Convergence of Real-Time Dynamic Program-
ming ».
Dans Proc. of the International Conference on Automated Planning and Schedu-
ling, pages 12–31, 2003.

[17] J. Bresina, R. Dearden, N. Meuleau, D. Smith et R. Washington.
« Planning Under Continuous Time and Resource Uncertainty : A Challenge For
AI ».
Dans Proc. of the Conference on Uncertainty in AI, pages 77–84, 2002.

[18] O. Buffet et D. Aberdeen.
« The Factored Policy-Gradient Planner ».
Artificial Intelligence, 173(5–6):722–747, 2009.

[19] B. Burns et O. Brock.
« Sampling-Based Motion Planning Using Predictive Models ».
Dans Proc. of the IEEE International Conference on Robotics and Automation,
2005.

[20] G. Campion, G. Bastin et B. d’Andréa-Novel.
« Structural Properties and Classification of Kinematic and Dynamic Models of
Wheeled Mobile Robots ».
IEEE Transactions on Robotics and Automation, 12(1):47–62, 1996.

[21] I. Song Gao Chabini.
« Optimal Routing Policy Problems in Stochastic Time-Dependent Networks : I.
Framework and Taxonomy ».
Dans Proc. of the IEEE Conference on Intelligent Transport System, page 549,
2002.

136

Bibliographie

[22] S. Chamberland, É. Beaudry, L. Clavien, F. Kabanza, F. Michaud et
M. Lauria.
« Motion Planning for an Omnidirectional Robot with Steering Constraints ».
Dans Proc. of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2010.

[23] L. Clavien, M. Lauria et F. Michaud.
« Instantaneous Centre of Rotation Estimation of an Omnidirectional Mobile
Robot ».
Dans Proc. of the IEEE International Conference on Robotics and Automation,
pages 5435–5440, 2010.

[24] W. Cushing, D. S. Weld, S. Kambhampati, Mausam et K. Talamadupula.
« Evaluating Temporal Planning Domains ».
Dans Proc. of the International Conference on Automated Planning and Schedu-
ling, pages 105–112, 2007.

[25] A. Darwiche.
Modeling and Reasoning with Bayesian Networks.
Cambridge University Press, April 2009.

[26] R. Dearden, N. Meuleau, S. Ramakrishnan, D. Smith et R. Washington.
« Incremental Contingency Planning ».
Dans Proc. of the ICAPS Workshop on Planning under Uncertainty, 2003.

[27] Y. Dimopoulos, A. Gerevini, P. Haslum et A. Saetti.
« The Benchmark Domains of the Deterministic Part of IPC-5 ».
DansWorking notes of the 16th International Conference on Automated Planning
& Scheduling (ICAPS-06) - 5th International Planning Competition, 2006.

[28] M.B. Do et S. Kambhampati.
« SAPA : A Scalable Multi-Objective Metric Temporal Planner ».
Journal of Artificial Intelligence Research, 20:155–194, 2003.

[29] R. Fikes et N.J. Nilsson.
« STRIPS : A New Approach to the Application of Theorem Proving to Problem
Solving ».

137

Bibliographie

Dans Proc. of the International Joint Conference on Artificial Intelligence, pages
608–620, 1971.

[30] M. Fox, A. Gerevini, D. Long et I. Serina.
« Plan Stability : Replanning Versus Plan Repair ».
Dans Proc. of the International Conference on Automated Planning and Schedu-
ling, 2006.

[31] M. Fox et D. Long.
« PDDL 2.1 : An Extension to PDDL for Expressing Temporal Planning Do-
mains ».
Journal of Artificial Intelligence Research, 20:61–124, 2003.

[32] E. Frazzoli, M. A. Dahleh et E. Feron.
« Real-Time Motion Planning for Agile Autonomous Vehicles ».
AIAA Journal on Guidance, Control on Dynamics, 25(1):116–129, 2002.

[33] J. Hoffmann et B. Nebel.
« The FF Planning System : Fast Plan Generation Through Heuristic Search ».
Journal of Artificial Intelligence Research, 14:253–302, 2001.

[34] D. Hsu, J.-C. Latombe et H. Kurniawati.
« On the Probabilistic Foundations of Probabilistic Roadmap Planning ».
Dans Proc. of the International Symposium on Robotics Research, 2005.

[35] J. J. Kuffner et S. M. LaValle.
« RRT-connect : An efficient approach to single-query path planning ».
Dans Proc. of the IEEE International Conference on Robotics and Automation,
pages 995–1001, 2000.

[36] H. Kurniawati et D. Hsu.
« Workspace Importance Sampling for Probabilistic Roadmap Planning ».
Dans Proc. of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2004.

[37] M. Lauria, I. Nadeau, P. Lepage, Y. Morin, P. Giguère, F. Gagnon,
D. Létourneau et F. Michaud.
« Design and Control of a Four Steered Wheeled Mobile Robot ».

138

Bibliographie

Dans Proc. of the 32nd Annual Conference of the IEEE Industrial Electronics,
pages 4020–4025, 7-10 Nov 2006.

[38] S. M. LaValle.
« Rapidly-Exploring Random Trees : A New Tool for Path Planning ».
Rapport Technique TR : 98-1, Computer Science Dept, Iowa State University,
1998.

[39] S. M. LaValle.
Planning Algorithms.
Cambridge University Press, 2006.

[40] A.M. Law et D.W. Kelton.
Simulation Modeling and Analysis.
McGraw-Hill, deuxième édition, 1997.

[41] R. Liboff.
Introductory Quantum Mechanics.
Addison-Wesley, 2003.

[42] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz et S. Thrun.
« Anytime Search in Dynamic Graphs ».
Artificial Intelligence, 172:1613–1643, September 2008.

[43] I. Little, D. Aberdeen et S. Thiébaux.
« Prottle : A Probabilistic Temporal Planner ».
Dans Proc. of the National Conference on Artificial Intelligence, 2005.

[44] G. F. Luger.
Artificial Intelligence : Structures and Strategies for Complex Problem Solving.
Addison Wesley, sixième édition, 2009.

[45] Mausam et D. S. Weld.
« Solving Concurrent Markov Decision Processes. ».
Dans Deborah L. McGuinness et George Ferguson, éditeurs, Proc. of the
National Conference on Artificial intelligence (AAAI), pages 716–722, 2004.

[46] Mausam et D. S. Weld.
« Probabilistic Temporal Planning with Uncertain Durations ».
Dans Proc. of the National Conference on Artificial Intelligence (AAAI), 2006.

139

Bibliographie

[47] Mausam et D. S. Weld.
« Concurrent Probabilistic Temporal Planning ».
Journal of Artificial Intelligence Research, 31:33–82, 2008.

[48] B. Medler.
« Views From Atop the Fence : Neutrality in Games ».
Dans Proc. of the ACM SIGGRAPH Symposium on Video Games, pages 81–88,
2008.

[49] F. Michaud, C. Cote, D. Letourneau, Y. Brosseau, J. Valin, É.
Beaudry, C. Raievsky, A. Ponchon, P. Moisan, P. Lepage, Y. Morin,
F. Gagnon, P. Giguère, M. Roux, S. Caron, P. Frenette et F. Kabanza..
« Spartacus Attending the 2005 AAAI Conference ».
Autonomous Robots. Special Issue on the AAAI Mobile Robot Competitions and
Exhibition, 22(4):369–383, 2007.

[50] F. Michaud, D. Létourneau, M. Arsenault, Y. Bergeron, R. Cadrin,
F. Gagnon, M.-A. Legault, M. Millette, J.-F. Paré, M.-C. Tremblay,
P. Lepage, Y. Morin, J. Bisson et S. Caron.
« Multi-Modal Locomotion Robotic Platform Using Leg-Track-Wheel Articula-
tions ».
Autonomous Robots, 18(2):137–156, 2005.

[51] D. Nau, M. Ghallab et P. Traverso.
Automated Planning : Theory & Practice.
Morgan Kaufmann Publishers Inc., 2004.

[52] D.S. Nau, T.C. Au, O. Ilghami, U. Kuter, J.W. Murdock, D. Wu et
F. Yaman.
« SHOP2 : An HTN Planning System ».
Journal of Artificial Intelligence Research, 20:379–404, 2003.

[53] B. Nebel.
« On the Compilability and Expressive Power of Propositional Planning Forma-
lisms ».
Journal of Artificial Intelligence Research, 12:271–315, 2000.

140

Bibliographie

[54] J. Pineau, G. Gordon et S. Thrun.
« Anytime Point-Based Approximations for Large POMDPs ».
Journal of Artificial Intelligence Research, 27:335–380, 2006.

[55] E. Plaku, K. Bekris et L. E. Kavraki.
« OOPS for Motion Planning : An Online Open-source Programming System ».
Dans Proc. of the IEEE International Conference on Robotics and Automation,
pages 3711–3716, 2007.

[56] E. Rachelson, P. Fabiani, F. Garcia et G. Quesnel.
« A Simulation-based Approach for Solving Temporal Markov Problems ».
Dans Proc. of the European Conference on Artificial Intelligence, 2008.

[57] S. Russell et P. Norvig.
Artificial Intelligence : A Modern Approach.
Prentice Hall, troisième édition, 2010.

[58] G. Sanchez et J.-C. Latombe.
« A Single-Query Bi-Directional Probabilistic Roadmap Planner with Lazy Col-
lision Checking ».
Dans Proc. of the International Symposium on Robotics Research, pages 403–417,
2001.

[59] B. Schwab.
AI Game Engine Programming.
Charles River Media, Inc., deuxième édition, 2008.

[60] D. Smith.
« Choosing Objectives in Over-Subscription Planning ».
Dans Proc. of the International Conference on Automated Planning and Schedu-
ling, 2004.

[61] R. S. Sutton, D. Mcallester, S. Singh et Y. Mansour.
« Policy Gradient Methods for Reinforcement Learning with Function Approxi-
mation ».
Dans In Advances in Neural Information Processing Systems 12, pages 1057–
1063. MIT Press, 1999.

141

Bibliographie

[62] J.P. van den Berg et M.H. Overmars.
« Using Workspace Information as a Guide to Non-Uniform Sampling in Proba-
bilistic Roadmap Planners ».
International Journal on Robotics Research, pages 1055–1071, 2005.

[63] A. Yershova, L. Jaillet, T. Simeon et S.M. LaValle.
« Dynamic-Domain RRTs : Efficient Exploration by Controlling the Sampling
Domain ».
Dans Proc. of the IEEE International Conference on Robotics and Automation,
2005.

[64] H. Younes et R. Simmons.
« Policy Generation for Continuous-Time Stochastic Domains with Concur-
rency ».
Dans Proc. of the International Conference on Automated Planning and Schedu-
ling, 2004.

142

	Sommaire
	Préface
	Abréviations
	Table des matières
	Liste des figures
	Liste des tableaux
	Introduction
	Planification d'actions concurrentes avec des contraintes et de l'incertitude sur le temps et les ressources
	Introduction
	Basic Concepts
	State Variables
	Time and Numerical Random Variables
	States
	Actions
	Dependencies on Action Duration Random Variables
	State Transition
	Goals
	Plans
	Metrics

	ActuPlannc : Nonconditional Planner
	Example on Transport domain
	Bayesian Network Inference Algorithm
	Minimum Final Cost Heuristic
	State Kernel Pruning Strategy
	Completeness and Optimality
	Finding Equivalent Random Variables

	ActuPlan : Conditional Plannner
	Intuitive Example
	Revised Nonconditional Planner
	Time Conditional Planner

	Experimental Results
	Concurrent MDP-based Planner
	Evaluation of ActuPlannc
	Evaluation of ActuPlan

	Related Works
	Conclusion and Future Work

	QuanPlan : un planificateur dans un espace d'états quantiques
	Introduction
	Basic Concepts
	State Variables
	Time Uncertainty
	Determined States
	Actions
	Actions in the Mars Rovers Domain
	State Transition
	Quantum States
	Observation of State Variables
	Goal

	Policy Generation in the Quantum State Space
	Example of Partial Search in the Quantum State Space
	Advanced Policy Generation
	Optimality

	Empirical Results
	Conclusion

	Application des processus décisionnels markoviens afin d'agrémenter l'adversaire dans un jeu de plateau
	Introduction
	Background
	Minimizing Costs
	Maximizing Rewards
	Algorithms for Solving MDPs

	Optimal Policy for Winning the Game
	The Modified Snakes and Ladders Game with Decisions
	Single Player
	Two Players
	Generalization to Multiplayer

	Optimal Policy for Gaming Experience
	Simple Opponent Abandonment Model
	Distance-Based Gaming Experience Model

	Conclusion

	Planification des déplacements d'un robot omnidirectionnel et non holonome
	Introduction
	Velocity State of AZIMUT
	Planning State Space
	Motion Planning Algorithm
	Goal and Metric
	Selecting a Node to Expand
	Selecting an Action

	Results
	Conclusion

	Conclusion

